Back to Search Start Over

Microfluidic Device Directly Fabricated on Screen-Printed Electrodes for Ultrasensitive Electrochemical Sensing of PSA

Authors :
Shouhui Chen
Zhihua Wang
Xinyuan Cui
Linlei Jiang
Yuee Zhi
Xianting Ding
Zhihong Nie
Pei Zhou
Daxiang Cui
Source :
Nanoscale Research Letters, Vol 14, Iss 1, Pp 1-7 (2019)
Publication Year :
2019
Publisher :
SpringerOpen, 2019.

Abstract

Abstract How to fabricate scale low-cost microfluidic device for detection of biomarkers owns a great requirement. Herein, it is for the first time reported that a new microfluidic device based on bonding polydimethylsiloxane microfluidic channels onto the substrate of a screen-printed electrode with coating glass solution was fabricated for electrochemical sensing of prostate-specific antigen (PSA). Compared to traditional microfabrication processes, this method is simple, fast, low cost, and also suitable for mass production. The prepared screen-printed electrode-based microfluidic device (CASPE-MFD) was used for the detection of the PSA in human serum. The prepared CASPE-MFD had a detection limit of 0.84 pg/mL (25.8 fM) and a good linearity with PSA concentration ranging from 0.001 to 10 ng/mL, which showed a great promise platform toward the development of miniaturized, low-cost electrochemical microfluidic device for use in human health, environmental monitoring, and other applications.

Details

Language :
English
ISSN :
19317573 and 1556276X
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nanoscale Research Letters
Publication Type :
Academic Journal
Accession number :
edsdoj.2abe104bc4074f448be583e83ef5eb63
Document Type :
article
Full Text :
https://doi.org/10.1186/s11671-019-2857-6