Back to Search Start Over

Antimicrobial Activity and Immunomodulatory Properties of Acidocin A, the Pediocin-like Bacteriocin with the Non-Canonical Structure

Authors :
Daria V. Antoshina
Sergey V. Balandin
Ivan V. Bogdanov
Maria A. Vershinina
Elvira V. Sheremeteva
Ilia Yu. Toropygin
Ekaterina I. Finkina
Tatiana V. Ovchinnikova
Source :
Membranes, Vol 12, Iss 12, p 1253 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Pediocin-like bacteriocins are among the natural antimicrobial agents attracting attention as scaffolds for the development of a new generation of antibiotics. Acidocin A has significant structural differences from most other members of this subclass. We studied its antibacterial and cytotoxic activity, as well as effects on the permeability of E. coli membranes in comparison with avicin A, the typical pediocin-like bacteriocin. Acidocin A had a more marked tendency to form an alpha-helical structure upon contact with detergent micelles, as was shown by CD spectroscopy, and demonstrated considerably less specific mode of action: it inhibited growth of Gram-positive and Gram-negative strains, which were unsusceptible to avicin A, and disrupted the integrity of outer and inner membranes of E. coli. However, the peptide retained a low toxicity towards normal and tumor human cells. The effect of mutations in the pediocin box of acidocin A (on average, a 2–4-fold decrease in activity) was less pronounced than is usually observed for such peptides. Using multiplex analysis, we showed that acidocin A and avicin A modulated the expression level of a number of cytokines and growth factors in primary human monocytes. Acidocin A induced the production of a number of inflammatory mediators (IL-6, TNFα, MIG/CXCL9, MCP-1/CCL2, MCP-3/CCL7, and MIP-1β) and inhibited the production of some anti-inflammatory factors (IL-1RA, MDC/CCL22). We assumed that the activity of acidocin A and similar peptides produced by lactic acid bacteria might affect the functional state of the human intestinal tract, not only through direct inhibition of various groups of symbiotic and pathogenic bacteria, but also via immunomodulatory effects.

Details

Language :
English
ISSN :
20770375
Volume :
12
Issue :
12
Database :
Directory of Open Access Journals
Journal :
Membranes
Publication Type :
Academic Journal
Accession number :
edsdoj.2ab97ea4beac432bb33ea1e762392442
Document Type :
article
Full Text :
https://doi.org/10.3390/membranes12121253