Back to Search Start Over

A synthetic cell-free 36-enzyme reaction system for vitamin B12 production

Authors :
Qian Kang
Huan Fang
Mengjie Xiang
Kaixing Xiao
Pingtao Jiang
Chun You
Sang Yup Lee
Dawei Zhang
Source :
Nature Communications, Vol 14, Iss 1, Pp 1-15 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Adenosylcobalamin (AdoCbl), a biologically active form of vitamin B12 (coenzyme B12), is one of the most complex metal-containing natural compounds and an essential vitamin for animals. However, AdoCbl can only be de novo synthesized by prokaryotes, and its industrial manufacturing to date was limited to bacterial fermentation. Here, we report a method for the synthesis of AdoCbl based on a cell-free reaction system performing a cascade of catalytic reactions from 5-aminolevulinic acid (5-ALA), an inexpensive compound. More than 30 biocatalytic reactions are integrated and optimized to achieve the complete cell-free synthesis of AdoCbl, after overcoming feedback inhibition, the complicated detection, instability of intermediate products, as well as imbalance and competition of cofactors. In the end, this cell-free system produces 417.41 μg/L and 5.78 mg/L of AdoCbl using 5-ALA and the purified intermediate product hydrogenobyrate as substrates, respectively. The strategies of coordinating synthetic modules of complex cell-free system describe here will be generally useful for developing cell-free platforms to produce complex natural compounds with long and complicated biosynthetic pathways.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.2a9304de076142edb92a158bbee21213
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-023-40932-4