Back to Search Start Over

Preparation of Fe3O4@polyoxometalates Nanocomposites and Their Efficient Adsorption of Cationic Dyes from Aqueous Solution

Authors :
Jie Li
Haiyan Zhao
Chenguang Ma
Qiuxia Han
Mingxue Li
Hongling Liu
Source :
Nanomaterials, Vol 9, Iss 4, p 649 (2019)
Publication Year :
2019
Publisher :
MDPI AG, 2019.

Abstract

In this work, two magnetic adsorbents Fe3O4@1 and Fe3O4@2 were prepared by combining Fe3O4 nanoparticles and polyoxometalate hybrids [Ni(HL)2]2H2[P2Mo5O23]·4H2O (1), [H2L]5H[P2Mo5O23]·12H2O (2) (HL = 2-acetylpyridine-thiosemicarbazone). The temperature-dependent zero-field-cooled (ZFC) and field-cooled (FC) measurements indicated the blocking temperature at 160 K and 180 K, respectively. The Brunauer–Emmett–Teller (BET) surface area of Fe3O4@1 and Fe3O4@2 is 8.106 m2/g and 1.787 m2/g, respectively. Cationic dye methylene blue (MB) and anionic dye methyl orange (MO) were investigated for selective dye adsorption on Fe3O4@1 and Fe3O4@2. The two adsorbents were beneficial for selective adsorption of cationic dyes. The adsorption efficiency of MB was 94.8% for Fe3O4@1, 97.67% for Fe3O4@2. Furthermore, the two adsorbents almost maintained the same adsorption efficiency after seven runs. The maximum MB adsorption capacity of Fe3O4@1 and Fe3O4@2 is 72.07 and 73.25 mg/g, respectively. The fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) spectra of the adsorbents collected after adsorption of MB are very similar to the initial as-synthesized Fe3O4@polyoxometalates indicating the high stability of the two adsorbents. The adsorption kinetics indicated that the MB removal followed the pseudo-second-order model. These results showed that the two adsorbents had a potential application in treating wastewater.

Details

Language :
English
ISSN :
20794991
Volume :
9
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Nanomaterials
Publication Type :
Academic Journal
Accession number :
edsdoj.2a8d5deb4ecd47d187f3a2b82f3af6ea
Document Type :
article
Full Text :
https://doi.org/10.3390/nano9040649