Back to Search Start Over

Standardized Whole-Blood Transcriptional Profiling Enables the Deconvolution of Complex Induced Immune Responses

Authors :
Alejandra Urrutia
Darragh Duffy
Vincent Rouilly
Céline Posseme
Raouf Djebali
Gabriel Illanes
Valentina Libri
Benoit Albaud
David Gentien
Barbara Piasecka
Milena Hasan
Magnus Fontes
Lluis Quintana-Murci
Matthew L. Albert
Laurent Abel
Andres Alcover
Kalla Astrom
Philippe Bousso
Pierre Bruhns
Ana Cumano
Caroline Demangel
Ludovic Deriano
James Di Santo
Françoise Dromer
Gérard Eberl
Jost Enninga
Jacques Fellay
Antonio Freitas
Odile Gelpi
Ivo Gomperts-Boneca
Serge Hercberg
Olivier Lantz
Claude Leclerc
Hugo Mouquet
Sandra Pellegrini
Stanislas Pol
Lars Rogge
Anavaj Sakuntabhai
Olivier Schwartz
Benno Schwikowski
Spencer Shorte
Vassili Soumelis
Frédéric Tangy
Eric Tartour
Antoine Toubert
Marie-Noëlle Ungeheuer
Source :
Cell Reports, Vol 16, Iss 10, Pp 2777-2791 (2016)
Publication Year :
2016
Publisher :
Elsevier, 2016.

Abstract

Systems approaches for the study of immune signaling pathways have been traditionally based on purified cells or cultured lines. However, in vivo responses involve the coordinated action of multiple cell types, which interact to establish an inflammatory microenvironment. We employed standardized whole-blood stimulation systems to test the hypothesis that responses to Toll-like receptor ligands or whole microbes can be defined by the transcriptional signatures of key cytokines. We found 44 genes, identified using Support Vector Machine learning, that captured the diversity of complex innate immune responses with improved segregation between distinct stimuli. Furthermore, we used donor variability to identify shared inter-cellular pathways and trace cytokine loops involved in gene expression. This provides strategies for dimension reduction of large datasets and deconvolution of innate immune responses applicable for characterizing immunomodulatory molecules. Moreover, we provide an interactive R-Shiny application with healthy donor reference values for induced inflammatory genes.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
22111247
Volume :
16
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Cell Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.29e815d288914e988aa9c079f47b8846
Document Type :
article
Full Text :
https://doi.org/10.1016/j.celrep.2016.08.011