Back to Search Start Over

Histological evaluation of a cochlear implant electrode array with electrically activated shape change for perimodiolar positioning

Authors :
Rau Thomas S.
Suzaly N.úha
Pawsey Nick
Hügl Silke
Majdani Lenarz
Majdani Omid
Source :
Current Directions in Biomedical Engineering, Vol 4, Iss 1, Pp 145-148 (2018)
Publication Year :
2018
Publisher :
De Gruyter, 2018.

Abstract

For the treatment of deafness or severe hearing loss cochlear implants (CI) are used to stimulate the auditory nerve of the inner ear. In order to produce an electrode array which is both atraumatic and reaches a perimodiolar final position a design featuring shape memory effect was proposed. A Nitinol wire with a diameter of 100 μm was integrated in a state of the art lateral wall electrode array. The wire serves as an actuator after it has been ‘trained’ to adopt the spiral shape of an average human cochlea. Three small diameter platinum-iridium wires (each 20 μm) were crimped to the Nitinol wire in order to produce thermal energy. An insertion test was pursued using a human temporal bone specimen. The prototype electrode array was cooled down by means of immersion in ice water and freeze spray to enable sufficient straightening. Thereafter, insertion into the cochlea through the round window as performed. Insertion was feasible but difficult as premature curling of the electrode occurred during the movement towards the inner ear while passing the middle ear cavity. Therefore, the insertion had to be performed faster than usual. The shape memory actuator was subsequently activated with 450mA current at 5V for 3 seconds. After insertion the specimen was embedded in epoxy resin, microgrinded and all histological slices were assessed for trauma. Perimodiolar position was achieved. No insertion trauma was observed and there were no indications of thermal damage caused by the electrical heating. To the best of our knowledge, this is the first histological evaluation of the insertion trauma caused by an electrically activated shape memory electrode array. These promising results support further research on shape memory CI electrode arrays.

Details

Language :
English
ISSN :
23645504
Volume :
4
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Current Directions in Biomedical Engineering
Publication Type :
Academic Journal
Accession number :
edsdoj.29665b19ada4e47af31c0757707f55c
Document Type :
article
Full Text :
https://doi.org/10.1515/cdbme-2018-0036