Back to Search
Start Over
In Vivo Imaging of Acute Hindlimb Ischaemia in Rat Model: A Pre-Clinical PET Study
- Source :
- Pharmaceutics, Vol 16, Iss 4, p 542 (2024)
- Publication Year :
- 2024
- Publisher :
- MDPI AG, 2024.
-
Abstract
- Background: To better understand ischaemia-related molecular alterations, temporal changes in angiogenic Aminopeptidase N (APN/CD13) expression and glucose metabolism were assessed with PET using a rat model of peripheral arterial disease (PAD). Methods: The mechanical occlusion of the base of the left hindlimb triggered using a tourniquet was applied to establish the ischaemia/reperfusion injury model in Fischer-344 rats. 2-[18F]FDG and [68Ga]Ga-NOTA-c(NGR) PET imaging performed 1, 3, 5, 7, and 10 days post-ischaemia induction was followed by Western blotting and immunohistochemical staining for APN/CD13 in ischaemic and control muscle tissue extracts. Results: Due to a cellular adaptation to hypoxia, a gradual increase in [68Ga]Ga-NOTA-c(NGR) and 2-[18F]FDG uptake was observed from post-intervention day 1 to 7 in the ischaemic hindlimbs, which was followed by a drop on day 10. Conforming pronounced angiogenic recovery, the NGR accretion of the ischaemic extremities differed significantly from the controls 5, 7, and 10 days after ischaemia induction (p ≤ 0.05), which correlated with the Western blot and immunohistochemical results. No remarkable radioactivity was depicted between the normally perfused hindlimbs of either the ischaemic or the control groups. Conclusions: The PET-based longitudinal assessment of angiogenesis-associated APN/CD13 expression and glucose metabolism during ischaemia may continue to broaden our knowledge on the pathophysiology of PAD.
Details
- Language :
- English
- ISSN :
- 19994923
- Volume :
- 16
- Issue :
- 4
- Database :
- Directory of Open Access Journals
- Journal :
- Pharmaceutics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.2922067021fc41558236fb02f2d7df70
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/pharmaceutics16040542