Back to Search
Start Over
The Effectiveness of Cyrene as a Solvent in Exfoliating 2D TMDs Nanosheets
- Source :
- International Journal of Molecular Sciences, Vol 24, Iss 13, p 10450 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- The pursuit of environmentally friendly solvents has become an essential research topic in sustainable chemistry and nanomaterial science. With the need to substitute toxic solvents in nanofabrication processes becoming more pressing, the search for alternative solvents has taken on a crucial role in this field. Additionally, the use of toxic, non-economical organic solvents, such as N-methyl-2 pyrrolidone and dimethylformamide, is not suitable for all biomedical applications, even though these solvents are often considered as the best exfoliating agents for nanomaterial fabrication. In this context, the success of producing two-dimensional transition metal dichalcogenides (2D TMDs), such as MoS2 and WS2, with excellent captivating properties is due to the ease of synthesis based on environment-friendly, benign methods with fewer toxic chemicals involved. Herein, we report for the first time on the use of cyrene as an exfoliating agent to fabricate monolayer and few-layered 2D TMDs with a versatile, less time-consuming liquid-phase exfoliation technique. This bio-derived, aprotic, green and eco-friendly solvent produced a stable, surfactant-free, concentrated 2D TMD dispersion with very interesting features, as characterized by UV–visible and Raman spectroscopies. The surface charge and morphology of the fabricated nanoflakes were analyzed using ς-potential and scanning electron microscopy. The study demonstrates that cyrene is a promising green solvent for the exfoliation of 2D TMD nanosheets with potential advantages over traditional organic solvents. The ability to produce smaller-sized—especially in the case of WS2 as compared to MoS2—and mono/few-layered nanostructures with higher negative surface charge values makes cyrene a promising candidate for various biomedical and electronic applications. Overall, the study contributes to the development of sustainable and environmentally friendly methods for the production of 2D nanomaterials for various applications.
- Subjects :
- 2D-MoS2
2D-WS2
LPE
cyrene
viscosity
DLVO
Biology (General)
QH301-705.5
Chemistry
QD1-999
Subjects
Details
- Language :
- English
- ISSN :
- 14220067 and 16616596
- Volume :
- 24
- Issue :
- 13
- Database :
- Directory of Open Access Journals
- Journal :
- International Journal of Molecular Sciences
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.290ceab450994aa6b69dfb6e9bad45dd
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/ijms241310450