Back to Search
Start Over
Non-local Problems with Integral Displacement for Highorder Parabolic Equations
- Source :
- Известия Иркутского государственного университета: Серия "Математика", Vol 36, Iss 1, Pp 14-28 (2021)
- Publication Year :
- 2021
- Publisher :
- Irkutsk State University, 2021.
-
Abstract
- The aim of this paper is to study the solvability of solutions of non-local problems with integral conditions in spatial variables for high-order linear parabolic equations in the classes of regular solutions (which have all the squared derivatives generalized by S. L. Sobolev that are included in the corresponding equation) . Previously, similar problems were studied for high-order parabolic equations, either in the one-dimensional case, or when certain conditions of smallness on the coefficients are met equations. In this paper, we present new results on the solvability of non-local problems with integral spatial variables for high-order parabolic equations a) in the multidimensional case with respect to spatial variables; b) in the absence of smallness conditions. The research method is based on the transition from a problem with non-local integral conditions to a problem with classical homogeneous conditions of the first or second kind on the side boundary for a loaded integro-differential equation. At the end of the paper, some generalizations of the obtained results will be described.
Details
- Language :
- English, Russian
- ISSN :
- 19977670 and 25418785
- Volume :
- 36
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Известия Иркутского государственного университета: Серия "Математика"
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.28fd5e025f2a4044b3e1f922808fbde4
- Document Type :
- article
- Full Text :
- https://doi.org/10.26516/1997-7670.2021.36.14