Back to Search Start Over

Exogenous interleukin 33 enhances the brain’s lymphatic drainage and toxic protein clearance in acute traumatic brain injury mice

Authors :
Mingqi Liu
Jinhao Huang
Tao Liu
Jiangyuan Yuan
Chuanxiang Lv
Zhuang Sha
Chenrui Wu
Weiwei Jiang
Xuanhui Liu
Meng Nie
Yupeng Chen
Shiying Dong
Yu Qian
Chuang Gao
Yibing Fan
Di Wu
Rongcai Jiang
Source :
Acta Neuropathologica Communications, Vol 11, Iss 1, Pp 1-16 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract The persistent dysregulation and accumulation of poisonous proteins from destructive neural tissues and cells activate pathological mechanisms after traumatic brain injury (TBI). The lymphatic drainage system of the brain, composed of the glymphatic system and meningeal lymphatic vessels (MLVs), plays an essential role in the clearance of toxic waste after brain injury. The neuroprotective effect of interleukin 33 (IL-33) in TBI mice has been demonstrated; however, its impact on brain lymphatic drainage is unclear. Here, we established a fluid percussion injury model to examine the IL-33 administration effects on neurological function and lymphatic drainage in the acute brain of TBI mice. We verified that exogenous IL-33 could improve the motor and memory skills of TBI mice and demonstrated that in the acute phase, it increased the exchange of cerebrospinal and interstitial fluid, reversed the dysregulation and depolarization of aquaporin-4 in the cortex and hippocampus, improved the drainage of MLVs to deep cervical lymph nodes, and reduced tau accumulation and glial activation. We speculate that the protective effect of exogenous IL-33 on TBI mice’s motor and cognitive functions is related to the enhancement of brain lymphatic drainage and toxic metabolite clearance from the cortex and hippocampus in the acute stage. These data further support the notion that IL-33 therapy may be an effective treatment strategy for alleviating acute brain injury after TBI.

Details

Language :
English
ISSN :
20515960
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Acta Neuropathologica Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.28e5005788d74724b864a3967375b42c
Document Type :
article
Full Text :
https://doi.org/10.1186/s40478-023-01555-4