Back to Search
Start Over
Carnegie Supernova Project I and II: Measurements of H 0 Using Cepheid, Tip of the Red Giant Branch, and Surface Brightness Fluctuation Distance Calibration to Type Ia Supernovae
- Source :
- The Astrophysical Journal, Vol 970, Iss 1, p 72 (2024)
- Publication Year :
- 2024
- Publisher :
- IOP Publishing, 2024.
-
Abstract
- We present an analysis of Type Ia supernovae (SNe Ia) from the Carnegie Supernova Project I and II and extend the Hubble diagram from optical to near-infrared wavelengths ( uBgVriYJH ). We calculate the Hubble constant, H _0 , using various distance calibrators: Cepheids, the tip of the red giant branch (TRGB), and surface brightness fluctuations (SBFs). Combining all methods of calibration, we derive H _0 = 71.76 ± 0.58 (stat) ± 1.19 (sys) km s ^−1 Mpc ^−1 from the B band and H _0 = 73.22 ± 0.68 (stat) ± 1.28 (sys) km s ^−1 Mpc ^−1 from the H band. By assigning equal weight to the Cepheid, TRGB, and SBF calibrators, we derive the systematic errors required for consistency in the first rung of the distance ladder, resulting in a systematic error of 1.2 ∼ 1.3 km s ^−1 Mpc ^−1 in H _0 . As a result, relative to the statistics-only uncertainty, the tension between the late-time H _0 we derive by combining the various distance calibrators and the early-time H _0 from the cosmic microwave background is reduced. The highest precision in SN Ia luminosity is found in the Y band (0.12 ± 0.01 mag), as defined by the intrinsic scatter ( σ _int ). We revisit SN Ia Hubble residual-host mass correlations and recover previous results that these correlations do not change significantly between the optical and near-infrared wavelengths. Finally, SNe Ia that explode beyond 10 kpc from their host centers exhibit smaller dispersion in their luminosity, confirming our earlier findings. A reduced effect of dust in the outskirts of hosts may be responsible for this effect.
Details
- Language :
- English
- ISSN :
- 15384357
- Volume :
- 970
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- The Astrophysical Journal
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.28e475ec0cc9466b88a955ded83817d5
- Document Type :
- article
- Full Text :
- https://doi.org/10.3847/1538-4357/ad3e63