Back to Search Start Over

A Double Epipolar Resampling Approach to Reliable Conjugate Point Extraction for Accurate Kompsat-3/3A Stereo Data Processing

Authors :
Jaehong Oh
Youkyung Han
Source :
Remote Sensing, Vol 12, Iss 18, p 2940 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Kompsat-3/3A provides along-track and across-track stereo data for accurate three-dimensional (3D) topographic mapping. Stereo data preprocessing involves conjugate point extraction and acquisition of ground control points (GCPs), rational polynomial coefficient (RPC) bias compensation, and epipolar image resampling. Applications where absolute positional accuracy is not a top priority do not require GCPs, but require precise conjugate points from stereo images for subsequent RPC bias compensation, i.e., relative orientation. Conjugate points are extracted between the original stereo data using image-matching methods by a proper outlier removal process. Inaccurate matching results and potential outliers produce geometric inconsistency in the stereo data. Hence, the reliability of conjugate point extraction must be improved. For this purpose, we proposed to apply the coarse epipolar resampling using raw RPCs before the conjugate point matching. We expect epipolar images with even inaccurate RPCs to show better stereo similarity than the original images, providing better conjugate point extraction. To this end, we carried out the quantitative analysis of the conjugate point extraction performance by comparing the proposed approach using the coarsely epipolar resampled images to the traditional approach using the original stereo images. We tested along-track Kompsat-3 stereo and across-track Kompsat-3A stereo data with four well-known image-matching methods: phase correlation (PC), mutual information (MI), speeded up robust features (SURF), and Harris detector combined with fast retina keypoint (FREAK) descriptor (i.e., Harris). These matching methods were applied to the original stereo images and coarsely resampled epipolar images, and the conjugate point extraction performance was investigated. Experimental results showed that the coarse epipolar image approach was very helpful for accurate conjugate point extraction, realizing highly accurate RPC refinement and sub-pixel y-parallax through fine epipolar image resampling, which was not achievable through the traditional approach. MI and PC provided the most stable results for both along-track and across-track test data with larger patch sizes of more than 400 pixels.

Details

Language :
English
ISSN :
20724292
Volume :
12
Issue :
18
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.28bbd1d081d64b62b151531c2edcf817
Document Type :
article
Full Text :
https://doi.org/10.3390/rs12182940