Back to Search Start Over

Heterogeneous photochemistry of imidazole-2-carboxaldehyde: HO2 radical formation and aerosol growth

Authors :
L. González Palacios
P. Corral Arroyo
K. Z. Aregahegn
S. S. Steimer
T. Bartels-Rausch
B. Nozière
C. George
M. Ammann
R. Volkamer
Source :
Atmospheric Chemistry and Physics, Vol 16, Pp 11823-11836 (2016)
Publication Year :
2016
Publisher :
Copernicus Publications, 2016.

Abstract

The multiphase chemistry of glyoxal is a source of secondary organic aerosol (SOA), including its light-absorbing product imidazole-2-carboxaldehyde (IC). IC is a photosensitizer that can contribute to additional aerosol ageing and growth when its excited triplet state oxidizes hydrocarbons (reactive uptake) via H-transfer chemistry. We have conducted a series of photochemical coated-wall flow tube (CWFT) experiments using films of IC and citric acid (CA), an organic proxy and H donor in the condensed phase. The formation rate of gas-phase HO2 radicals (PHO2) was measured indirectly by converting gas-phase NO into NO2. We report on experiments that relied on measurements of NO2 formation, NO loss and HONO formation. PHO2 was found to be a linear function of (1) the [IC] × [CA] concentration product and (2) the photon actinic flux. Additionally, (3) a more complex function of relative humidity (25 % 2 ∕ N2 ratio (15 % 2 ∕ N2 2 mobility and losses in the film. The maximum PHO2 was observed at 25–55 % RH and at ambient O2 ∕ N2. The HO2 radicals form in the condensed phase when excited IC triplet states are reduced by H transfer from a donor, CA in our system, and subsequently react with O2 to regenerate IC, leading to a catalytic cycle. OH does not appear to be formed as a primary product but is produced from the reaction of NO with HO2 in the gas phase. Further, seed aerosols containing IC and ammonium sulfate were exposed to gas-phase limonene and NOx in aerosol flow tube experiments, confirming significant PHO2 from aerosol surfaces. Our results indicate a potentially relevant contribution of triplet state photochemistry for gas-phase HO2 production, aerosol growth and ageing in the atmosphere.

Subjects

Subjects :
Physics
QC1-999
Chemistry
QD1-999

Details

Language :
English
ISSN :
16807316 and 16807324
Volume :
16
Database :
Directory of Open Access Journals
Journal :
Atmospheric Chemistry and Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.28a8bc235db14f3dad2d24865759780f
Document Type :
article
Full Text :
https://doi.org/10.5194/acp-16-11823-2016