Back to Search Start Over

Identification and Expert Approach to Controlling the Cement Grinding Process Using Artificial Neural Networks and Other Non-Linear Models

Authors :
Dawid Pawus
Szczepan Paszkiel
Source :
IEEE Access, Vol 12, Pp 26364-26383 (2024)
Publication Year :
2024
Publisher :
IEEE, 2024.

Abstract

The paper involved conducting preliminary research to explore the identification and control of a multi-dimensional, non-linear, and non-stationary cement grinding process using artificial neural networks and various other non-linear models. The primary objective was to establish a precise model that accurately characterizes the functioning of the grinding system. Several model structures were employed, including NARX models based on feed-forward network, Elman, Jordan, and Layer-Recurrent Network (LRN) recurrent networks, as well as MTL (Multi-Task Learning) and traditional NARX non-linear models. It was observed that, in contrast to the linear models, the non-linear models exhibited significantly superior performance in the modeling of the system. Another notable outcome of this research is the proposal of a neurocontroller, functioning as an expert system, which can provide control signals to operators. The development and implementation of such a neurocontroller have the potential to enhance the quality, simplicity, and efficiency of cement grinding process control.

Details

Language :
English
ISSN :
21693536
Volume :
12
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.2842443cef94088b6dd2539799ee85a
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2024.3366703