Back to Search Start Over

Tire mode shape categorization using Zernike annular moment and machine learning classification

Authors :
Sudharsan Parthasarathy
Junhyeon Seo
Rakesh K. Kapania
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-13 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract This research proposes a framework for categorizing the radial tire mode shapes using machine learning (ML) based classification and feature recognition algorithms, advancing the development of a digital twin for tire performance analysis. Tire mode shape categorization is required to identify modal features in a specific frequency range to maximize driving performance and secure safety. However, the mode categorization work requires a lot of manual effort to interpret modes. Therefore, this study suggests an ML-based classification tool to replace the conventional categorization process with two primary objectives: (1) create a database by categorizing the tire mode shapes based on the identified features and (2) develop an ML-based surrogate model to classify the tire mode shapes without manual effort. The feature map of the tire mode shape is built with the Zernike annular moment descriptor (ZAMD). The mode shapes are categorized using the correlation value derived by the modal assurance criteria (MAC) with all ZAMD values for each tire mode shape and subsequently creating the appropriate labels. The decision tree, random forests, and XGBoost, the representative supervised-learning algorithms for classification, are implemented for surrogate model development. The best-performed classifier can categorize the mode shapes without any manual effort with a high accuracy of 99.5%.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.27fb6186f634fdf9b0550cf78041d47
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-59548-9