Back to Search
Start Over
Dysregulated innate immune signaling cooperates with RUNX1 mutations to transform an MDS-like disease to AML
- Source :
- iScience, Vol 27, Iss 6, Pp 109809- (2024)
- Publication Year :
- 2024
- Publisher :
- Elsevier, 2024.
-
Abstract
- Summary: Dysregulated innate immune signaling is linked to preleukemic conditions and myeloid malignancies. However, it is unknown whether sustained innate immune signaling contributes to malignant transformation. Here we show that cell-intrinsic innate immune signaling driven by miR-146a deletion (miR-146aKO), a commonly deleted gene in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), cooperates with mutant RUNX1 (RUNX1mut) to initially induce marrow failure and features of MDS. However, miR-146aKO hematopoietic stem and/or progenitor cells (HSPCs) expressing RUNX1mut eventually progress to a fatal AML. miR-146aKO HSPCs exhaust during serial transplantation, while expression of RUNX1mut restored their hematopoietic cell function. Thus, HSPCs exhibiting dysregulated innate immune signaling require a second hit to develop AML. Inhibiting the dysregulated innate immune pathways with a TRAF6-UBE2N inhibitor suppressed leukemic miR-146aKO/RUNX1mut HSPCs, highlighting the necessity of TRAF6-dependent cell-intrinsic innate immune signaling in initiating and maintaining AML. These findings underscore the critical role of dysregulated cell-intrinsic innate immune signaling in driving preleukemic cells toward AML progression.
- Subjects :
- Disease
Pathophysiology
Immune response
Science
Subjects
Details
- Language :
- English
- ISSN :
- 25890042
- Volume :
- 27
- Issue :
- 6
- Database :
- Directory of Open Access Journals
- Journal :
- iScience
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.27e314a429b04c5388a0550ebdd9ec6f
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.isci.2024.109809