Back to Search Start Over

Same-strand overlapping genes in bacteria: compositional determinants of phase bias

Authors :
Landan Giddy
Graur Dan
Sabath Niv
Source :
Biology Direct, Vol 3, Iss 1, p 36 (2008)
Publication Year :
2008
Publisher :
BMC, 2008.

Abstract

Abstract Background Same-strand overlapping genes may occur in frameshifts of one (phase 1) or two nucleotides (phase 2). In previous studies of bacterial genomes, long phase-1 overlaps were found to be more numerous than long phase-2 overlaps. This bias was explained by either genomic location or an unspecified selection advantage. Models that focused on the ability of the two genes to evolve independently did not predict this phase bias. Here, we propose that a purely compositional model explains the phase bias in a more parsimonious manner. Same-strand overlapping genes may arise through either a mutation at the termination codon of the upstream gene or a mutation at the initiation codon of the downstream gene. We hypothesized that given these two scenarios, the frequencies of initiation and termination codons in the two phases may determine the number for overlapping genes. Results We examined the frequencies of initiation- and termination-codons in the two phases, and found that termination codons do not significantly differ between the two phases, whereas initiation codons are more abundant in phase 1. We found that the primary factors explaining the phase inequality are the frequencies of amino acids whose codons may combine to form start codons in the two phases. We show that the frequencies of start codons in each of the two phases, and, hence, the potential for the creation of overlapping genes, are determined by a universal amino-acid frequency and species-specific codon usage, leading to a correlation between long phase-1 overlaps and genomic GC content. Conclusion Our model explains the phase bias in same-strand overlapping genes by compositional factors without invoking selection. Therefore, it can be used as a null model of neutral evolution to test selection hypotheses concerning the evolution of overlapping genes. Reviewers This article was reviewed by Bill Martin, Itai Yanai, and Mikhail Gelfand.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
17456150
Volume :
3
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Biology Direct
Publication Type :
Academic Journal
Accession number :
edsdoj.273ba48f831e44cdaa95dd6e88127bd7
Document Type :
article
Full Text :
https://doi.org/10.1186/1745-6150-3-36