Back to Search Start Over

Silibinin Attenuates Silica Dioxide Nanoparticles-Induced Inflammation by Suppressing TXNIP/MAPKs/AP-1 Signaling

Authors :
Je-Oh Lim
Na-Rae Shin
Yun-Soo Seo
Hyeon-Hwa Nam
Je-Won Ko
Tae-Yang Jung
Se-Jin Lee
Ha-Jung Kim
Young-Kwon Cho
Jong-Choon Kim
In-Chul Lee
Joong-Sun Kim
In-Sik Shin
Source :
Cells, Vol 9, Iss 3, p 678 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Silica dioxide nanoparticles (SiONPs) have been applied to several fields, such as drug delivery and gene therapy. However, SiONPs are a constituent of fine dust and can induce excessive inflammatory responses in the lungs via the airways. Silibinin, a major component of silymarin, has been known for its anti-oxidant and anti-inflammatory effects. In the present study, we explored the protective effects of silibinin against SiONPs-induced airway inflammation and explored its underlying mechanism of action, focusing on thioredoxin-interacting protein (TXNIP)/mitogen-activated protein kinases (MAPKs) in vitro and in vivo. In SiONPs-stimulated NCI-H292 airway epithelial cells, silibinin treatment effectively suppressed the elevation of the mRNA expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β, which was accompanied by the reduction in the expression of TXNIP, MAPKs, and activator protein-1 (AP-1). In SiONPs-treated mice, silibinin administration inhibited the increase in inflammatory cell counts and proinflammatory mediators, and it alleviated airway inflammation by SiONPs exposure. In addition, silibinin administration effectively suppressed the elevation of TXNIP/MAPKs/AP-1 signaling by SiONPs exposure. Taken together, silibinin effectively inhibited SiONPs-induced inflammatory responses, and this effect was closely related to the inhibition of TXNIP/MAPK/AP-1 signaling. These results suggested that silibinin might be useful for reducing pulmonary inflammation induced by SiONPs.

Details

Language :
English
ISSN :
20734409
Volume :
9
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Cells
Publication Type :
Academic Journal
Accession number :
edsdoj.26bfad041f9b4037bf56f4236dcf1068
Document Type :
article
Full Text :
https://doi.org/10.3390/cells9030678