Back to Search Start Over

Graph neural networks for materials science and chemistry

Authors :
Patrick Reiser
Marlen Neubert
André Eberhard
Luca Torresi
Chen Zhou
Chen Shao
Houssam Metni
Clint van Hoesel
Henrik Schopmans
Timo Sommer
Pascal Friederich
Source :
Communications Materials, Vol 3, Iss 1, Pp 1-18 (2022)
Publication Year :
2022
Publisher :
Nature Portfolio, 2022.

Abstract

Graph neural networks are machine learning models that directly access the structural representation of molecules and materials. This Review discusses state-of-the-art architectures and applications of graph neural networks in materials science and chemistry, indicating a possible road-map for their further development.

Details

Language :
English
ISSN :
26624443
Volume :
3
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Communications Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.26a8ac8ff79b4428871a0977411be761
Document Type :
article
Full Text :
https://doi.org/10.1038/s43246-022-00315-6