Back to Search Start Over

Evaluation of bioactivity and antibacterial properties of Ti6Al4V-based green biocomposite implant encompassing TiO2 nanotube arrays and garlic extract

Authors :
Sadegh Jafari Jebeli
Rouhollah Mehdinavaz Aghdam
Aryan Najjari
Reza Soltani
Source :
Heliyon, Vol 10, Iss 7, Pp e28588- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

This study involved the incorporation of an antibacterial garlic extract into titanium oxide nanotubes (TNTs) formed via the anodization of Ti6Al4V implants. The garlic extract, obtained through low-temperature extraction aided by ultrasound waves, was loaded into the nanotubes. The presence of the nanotubes was confirmed through X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). Fourier-transform infrared spectroscopy (FT-IR) and gas chromatography-mass spectrometry (GC-MS) were used to investigate the presence of bioactive compounds, particularly sulfur compounds responsible for garlic's antibacterial effects. The impact of loading two concentrations (0.1 and 0.2 g per milliliter) of garlic extract on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria was examined. Results indicated a decrease in the growth range of S. aureus from 109 to 106 (CFU/ml) and E. coli from 1011 to 109 (CFU/ml) upon treatment. Additionally, cell adhesion and viability tests conducted on MG63 cells revealed an 8% increase in cell viability with the 0.1 g per milliliter concentration and a 35% decrease with the 0.2 g per milliliter concentration of garlic extract after 72 h of incubation (They have been evaluated by Microculture tetrazolium (MTT) assay). GC-MS analysis identified the presence of diethyl phthalate compounds in the garlic extract, suggesting a potential correlation with cellular toxicity observed in the sample with the higher concentration (0.2 g per milliliter) of garlic extract. Overall, the TNTs loaded with 0.1 g per milliliter of garlic extract simultaneously demonstrated antibacterial activity, cell viability, adhesion, and growth enhancement.

Details

Language :
English
ISSN :
24058440
Volume :
10
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Heliyon
Publication Type :
Academic Journal
Accession number :
edsdoj.2699610f9c6e4591a3c0e5cfbc73fb49
Document Type :
article
Full Text :
https://doi.org/10.1016/j.heliyon.2024.e28588