Back to Search Start Over

Nonlinear Spatiotemporal Viral Infection Model with CTL Immunity: Mathematical Analysis

Authors :
Jaouad Danane
Karam Allali
Léon Matar Tine
Vitaly Volpert
Source :
Mathematics, Vol 8, Iss 1, p 52 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

A mathematical model describing viral dynamics in the presence of the latently infected cells and the cytotoxic T-lymphocytes cells (CTL), taking into consideration the spatial mobility of free viruses, is presented and studied. The model includes five nonlinear differential equations describing the interaction among the uninfected cells, the latently infected cells, the actively infected cells, the free viruses, and the cellular immune response. First, we establish the existence, positivity, and boundedness for the suggested diffusion model. Moreover, we prove the global stability of each steady state by constructing some suitable Lyapunov functionals. Finally, we validated our theoretical results by numerical simulations for each case.

Details

Language :
English
ISSN :
22277390
Volume :
8
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Mathematics
Publication Type :
Academic Journal
Accession number :
edsdoj.2676cb457db44589a6fca40e0b34c607
Document Type :
article
Full Text :
https://doi.org/10.3390/math8010052