Back to Search
Start Over
Nonlinear Spatiotemporal Viral Infection Model with CTL Immunity: Mathematical Analysis
- Source :
- Mathematics, Vol 8, Iss 1, p 52 (2020)
- Publication Year :
- 2020
- Publisher :
- MDPI AG, 2020.
-
Abstract
- A mathematical model describing viral dynamics in the presence of the latently infected cells and the cytotoxic T-lymphocytes cells (CTL), taking into consideration the spatial mobility of free viruses, is presented and studied. The model includes five nonlinear differential equations describing the interaction among the uninfected cells, the latently infected cells, the actively infected cells, the free viruses, and the cellular immune response. First, we establish the existence, positivity, and boundedness for the suggested diffusion model. Moreover, we prove the global stability of each steady state by constructing some suitable Lyapunov functionals. Finally, we validated our theoretical results by numerical simulations for each case.
- Subjects :
- viral infection
diffusion
lyapunov functional
convergence
Mathematics
QA1-939
Subjects
Details
- Language :
- English
- ISSN :
- 22277390
- Volume :
- 8
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.2676cb457db44589a6fca40e0b34c607
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/math8010052