Back to Search Start Over

Dynamically tuning friction at the graphene interface using the field effect

Authors :
Gus Greenwood
Jin Myung Kim
Shahriar Muhammad Nahid
Yeageun Lee
Amin Hajarian
SungWoo Nam
Rosa M. Espinosa-Marzal
Source :
Nature Communications, Vol 14, Iss 1, Pp 1-12 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Dynamically controlling friction in micro- and nanoscale devices is possible using applied electrical bias between contacting surfaces, but this can also induce unwanted reactions which can affect device performance. External electric fields provide a way around this limitation by removing the need to apply bias directly between the contacting surfaces. 2D materials are promising candidates for this approach as their properties can be easily tuned by electric fields and they can be straightforwardly used as surface coatings. This work investigates the friction between single layer graphene and an atomic force microscope tip under the influence of external electric fields. While the primary effect in most systems is electrostatically controllable adhesion, graphene in contact with semiconducting tips exhibits a regime of unexpectedly enhanced and highly tunable friction. The origins of this phenomenon are discussed in the context of fundamental frictional dissipation mechanisms considering stick slip behavior, electron-phonon coupling and viscous electronic flow.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.26571aad915046b58b4bb8d0223c3b24
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-023-41375-7