Back to Search Start Over

Exploring Functionalized Magnetic Hydrogel Polyvinyl Alcohol and Chitosan Electrospun Nanofibers

Exploring Functionalized Magnetic Hydrogel Polyvinyl Alcohol and Chitosan Electrospun Nanofibers

Authors :
Mónica Guerra
Fábio F. F. Garrudo
Célia Faustino
Maria Emilia Rosa
Maria H. L. Ribeiro
Source :
Gels, Vol 9, Iss 12, p 968 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Nanofibrous materials present interesting characteristics, such as higher area/mass ratio and reactivity. These properties have been exploited in different applications, such as drug-controlled release and site-specific targeting of biomolecules for several disease treatments, including cancer. The main goal of this study was to develop magnetized nanofiber systems of lysozyme (Lys) for biological applications. The system envisaged electrospun polyvinyl alcohol (PVA) and PVA/chitosan (CS) nanofibers, loaded with Lys, crosslinked with boronic acids [phenylboronic acid (PBA), including 2-acetylphenylboronic acid (aPBA), 2-formylphenylboronic (fPBA), or bortezomib (BTZ)] and functionalized with magnetic nanobeads (IONPs), which was successfully built and tested using a microscale approach. Evaluation of the morphology of nanofibers, obtained by electrospinning, was carried out using SEM. The biological activities of the Lys-loaded PVA/CS (90:10 and 70:30) nanofibers were evaluated using the Micrococcus lysodeikticus method. To evaluate the success of the encapsulation process, the ratio of adsorbed Lys on the nanofibers, Lys activity, and in vitro Lys release were determined in buffer solution at pH values mimicking the environment of cancer cells. The viability of Caco-2 cancer cells was evaluated after being in contact with electrospun PVA + Lys and PVA/CS + Lys nanofibers, with or without boronic acid functionalation, and all were magnetized with IONPs.

Details

Language :
English
ISSN :
23102861
Volume :
9
Issue :
12
Database :
Directory of Open Access Journals
Journal :
Gels
Publication Type :
Academic Journal
Accession number :
edsdoj.2623e12f7ceb440cabecf474a6edc066
Document Type :
article
Full Text :
https://doi.org/10.3390/gels9120968