Back to Search Start Over

Cohort-specific imputation of gene expression improves prediction of warfarin dose for African Americans

Authors :
Assaf Gottlieb
Roxana Daneshjou
Marianne DeGorter
Stephane Bourgeois
Peter J. Svensson
Mia Wadelius
Panos Deloukas
Stephen B. Montgomery
Russ B. Altman
Source :
Genome Medicine, Vol 9, Iss 1, Pp 1-9 (2017)
Publication Year :
2017
Publisher :
BMC, 2017.

Abstract

Abstract Background Genome-wide association studies are useful for discovering genotype–phenotype associations but are limited because they require large cohorts to identify a signal, which can be population-specific. Mapping genetic variation to genes improves power and allows the effects of both protein-coding variation as well as variation in expression to be combined into “gene level” effects. Methods Previous work has shown that warfarin dose can be predicted using information from genetic variation that affects protein-coding regions. Here, we introduce a method that improves dose prediction by integrating tissue-specific gene expression. In particular, we use drug pathways and expression quantitative trait loci knowledge to impute gene expression—on the assumption that differential expression of key pathway genes may impact dose requirement. We focus on 116 genes from the pharmacokinetic and pharmacodynamic pathways of warfarin within training and validation sets comprising both European and African-descent individuals. Results We build gene-tissue signatures associated with warfarin dose in a cohort-specific manner and identify a signature of 11 gene-tissue pairs that significantly augments the International Warfarin Pharmacogenetics Consortium dosage-prediction algorithm in both populations. Conclusions Our results demonstrate that imputed expression can improve dose prediction and bridge population-specific compositions. MATLAB code is available at https://github.com/assafgo/warfarin-cohort

Details

Language :
English
ISSN :
1756994X
Volume :
9
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Genome Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.261a8c9e0ef54d29a241ab8e535b6302
Document Type :
article
Full Text :
https://doi.org/10.1186/s13073-017-0495-0