Back to Search Start Over

Development and validation of a predictive model combining patient-reported outcome measures, spirometry and exhaled nitric oxide fraction for asthma diagnosis

Authors :
Gilles Louis
Florence Schleich
Michèle Guillaume
Delphine Kirkove
Halehsadat Nekoee Zahrei
Anne-Françoise Donneau
Monique Henket
Virginie Paulus
Françoise Guissard
Renaud Louis
Benoit Pétré
Source :
ERJ Open Research, Vol 9, Iss 1 (2023)
Publication Year :
2023
Publisher :
European Respiratory Society, 2023.

Abstract

Introduction Although asthma is a common disease, its diagnosis remains a challenge in clinical practice with both over- and underdiagnosis. Here, we performed a prospective observational study investigating the value of symptom intensity scales alone or combined with spirometry and exhaled nitric oxide fraction (FENO) to aid in asthma diagnosis. Methods Over a 38-month period we recruited 303 untreated patients complaining of symptoms suggestive of asthma (wheezing, dyspnoea, cough, sputum production and chest tightness). The whole cohort was split into a training cohort (n=166) for patients recruited during odd months and a validation cohort (n=137) for patients recruited during even months. Asthma was diagnosed either by a positive reversibility test (≥12% and ≥200 mL in forced expiratory volume in 1 s (FEV1)) and/or a positive bronchial challenge test (provocative concentration of methacholine causing a 20% fall in FEV1 ≤8 mg·mL−1). In order to assess the diagnostic performance of symptoms, spirometric indices and FENO, we performed receiver operating characteristic curve analysis and multivariable logistic regression to identify the independent factors associated with asthma in the training cohort. Then, the derived predictive models were applied to the validation cohort. Results 63% of patients in the derivation cohort and 58% of patients in the validation cohort were diagnosed as being asthmatic. After logistic regression, wheezing was the only symptom to be significantly associated with asthma. Similarly, FEV1 (% pred), FEV1/forced vital capacity (%) and FENO were significantly associated with asthma. A predictive model combining these four parameters yielded an area under the curve of 0.76 (95% CI 0.66–0.84) in the training cohort and 0.73 (95% CI 0.65–0.82) when applied to the validation cohort. Conclusion Combining a wheezing intensity scale with spirometry and FENO may help in improving asthma diagnosis accuracy in clinical practice.

Subjects

Subjects :
Medicine

Details

Language :
English
ISSN :
23120541
Volume :
9
Issue :
1
Database :
Directory of Open Access Journals
Journal :
ERJ Open Research
Publication Type :
Academic Journal
Accession number :
edsdoj.25c8f661cceb45e19aa1a0f002b00833
Document Type :
article
Full Text :
https://doi.org/10.1183/23120541.00451-2022