Back to Search Start Over

Neuroprotective Effect of Taurine against Cell Death, Glial Changes, and Neuronal Loss in the Cerebellum of Rats Exposed to Chronic-Recurrent Neuroinflammation Induced by LPS

Authors :
Samara P. Silva
Adriana M. Zago
Fabiano B. Carvalho
Lucas Germann
Gabriela de M. Colombo
Francine L. Rahmeier
Jessié M. Gutierres
Cristina R. Reschke
Margarete D. Bagatini
Charles E. Assmann
Marilda da C. Fernandes
Source :
Journal of Immunology Research, Vol 2021 (2021)
Publication Year :
2021
Publisher :
Hindawi Limited, 2021.

Abstract

The present study investigated the neuroprotective effect of taurine against the deleterious effects of chronic-recurrent neuroinflammation induced by LPS in the cerebellum of rats. Adult male Wistar rats were treated with taurine for 28 days. Taurine was administered at a dose of 30 or 100 mg/kg, by gavage. On days 7, 14, 21, and 28, the animals received LPS (250 μg/kg) intraperitoneally. The vehicle used was saline. The animals were divided into six groups: vehicle, taurine 30 mg/kg, taurine 100 mg/kg, LPS, LPS plus taurine 30 mg/kg, and LPS plus taurine 100 mg/kg. On day 29, the animals were euthanized, and the cerebellum was removed and prepared for immunofluorescence analysis using antibodies of GFAP, NeuN, CD11b, and cleaved caspase-3. LPS group showed a reduction in the immunoreactivity of GFAP in the arbor vitae and medullary center and of NeuN in the granular layer of the cerebellar cortex. LPS increased the immunoreactivity of CD11b in the arbor vitae and in the medullary center. Taurine protected against these effects induced by LPS in immunoreactivity of GFAP, NeuN, and CD11b, with the 100 mg/kg dose being the most effective. LPS induced an increase in the number of positive cleaved caspase-3 cells in the Purkinje cell layers, granular layer, arbor vitae, and medullary center. Taurine showed its antiapoptotic activity by reducing the cleaved caspase-3 cells in relation to the LPS group. Here, a potential neuroprotective role of taurine can be seen since this amino acid was effective in protecting the cerebellum of rats against cell death and changes in glial and neuronal cells in the face of chronic-recurrent neuroinflammation.

Details

Language :
English
ISSN :
23148861 and 23147156
Volume :
2021
Database :
Directory of Open Access Journals
Journal :
Journal of Immunology Research
Publication Type :
Academic Journal
Accession number :
edsdoj.25bfee40502d45b9857d8eca760a5c5f
Document Type :
article
Full Text :
https://doi.org/10.1155/2021/7497185