Back to Search Start Over

Freezing Tolerance of Lolium multiflorum/Festuca arundinacea Introgression Forms is Associated with the High Activity of Antioxidant System and Adjustment of Photosynthetic Activity under Cold Acclimation

Authors :
Adam Augustyniak
Izabela Pawłowicz
Katarzyna Lechowicz
Karolina Izbiańska-Jankowska
Magdalena Arasimowicz-Jelonek
Marcin Rapacz
Dawid Perlikowski
Arkadiusz Kosmala
Source :
International Journal of Molecular Sciences, Vol 21, Iss 16, p 5899 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Though winter-hardiness is a complex trait, freezing tolerance was proved to be its main component. Species from temperate regions acquire tolerance to freezing in a process of cold acclimation, which is associated with the exposure of plants to low but non-freezing temperatures. However, mechanisms of cold acclimation in Lolium-Festuca grasses, important for forage production in Europe, have not been fully recognized. Thus, two L. multiflorum/F. arundinacea introgression forms with distinct freezing tolerance were used herein as models in the comprehensive research to dissect these mechanisms in that group of plants. The work was focused on: (i) analysis of cellular membranes’ integrity; (ii) analysis of plant photosynthetic capacity (chlorophyll fluorescence; gas exchange; gene expression, protein accumulation, and activity of selected enzymes of the Calvin cycle); (iii) analysis of plant antioxidant capacity (reactive oxygen species generation; gene expression, protein accumulation, and activity of selected enzymes); and (iv) analysis of Cor14b accumulation, under cold acclimation. The more freezing tolerant introgression form revealed a higher integrity of membranes, an ability to cold acclimate its photosynthetic apparatus and higher water use efficiency after three weeks of cold acclimation, as well as a higher capacity of the antioxidant system and a lower content of reactive oxygen species in low temperature.

Details

Language :
English
ISSN :
14220067 and 16616596
Volume :
21
Issue :
16
Database :
Directory of Open Access Journals
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.25a9dd5537c14daea1f50031a7605049
Document Type :
article
Full Text :
https://doi.org/10.3390/ijms21165899