Back to Search Start Over

High sensitivity and wide response range artificial synapse based on polyimide with embedded graphene quantum dots

Authors :
Lijie Kou
Nan Ye
Anjam Waheed
Rahmat Zaki Auliya
Chaoxing Wu
Poh Choon Ooi
Fushan Li
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-10 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Artificial electronic synapses are commonly used to simulate biological synapses to realize various learning functions, regarded as one of the key technologies in the next generation of neurological computation. This work used a simple spin coating technique to fabricate polyimide (PI):graphene quantum dots(GQDs) memristor structure. As a result, the devices exhibit remarkably stable exponentially decaying postsynaptic suppression current over time, as interpreted in the spike-timing-dependent plasticity phenomenon. Furthermore, with the increase of the applied electrical signal over time, the conductance of the electrical synapse gradually changes, and the electronic synapse also shows plasticity dependence on the amplitude and frequency of the pulse applied. In particular, the devices with the structure of Ag/PI:GQDs/ITO prepared in this study can produce a stable response to the stimulation of electrical signals between millivolt to volt, showing not only high sensitivity but also a wide range of “feelings”, which makes the electronic synapses take a step forwards to emulate biological synapses. Meanwhile, the electronic conduction mechanisms of the device are also studied and expounded in detail. The findings in this work lay a foundation for developing brain-like neuromorphic modeling in artificial intelligence.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.25a51b9f462449238be69e49e92cbb0d
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-35183-8