Back to Search Start Over

Mass and Extremals Associated with the Hardy–Schrödinger Operator on Hyperbolic Space

Authors :
Chan Hardy
Ghoussoub Nassif
Mazumdar Saikat
Shakerian Shaya
de Oliveira Faria Luiz Fernando
Source :
Advanced Nonlinear Studies, Vol 18, Iss 4, Pp 671-689 (2018)
Publication Year :
2018
Publisher :
De Gruyter, 2018.

Abstract

We consider the Hardy–Schrödinger operator Lγ:=-Δ𝔹n-γ⁢V2{L_{\gamma}:=-\Delta_{\mathbb{B}^{n}}-\gamma{V_{2}}} on the Poincaré ball model of the hyperbolic space 𝔹n{\mathbb{B}^{n}} (n≥3{n\geq 3}). Here V2{V_{2}} is a radially symmetric potential, which behaves like the Hardy potential around its singularity at 0, i.e., V2⁢(r)∼1r2{V_{2}(r)\sim\frac{1}{r^{2}}}. As in the Euclidean setting, Lγ{L_{\gamma}} is positive definite whenever γn-2n-4⁢(n⁢(n-4)4-γ){\lambda>\frac{n-2}{n-4}(\frac{n(n-4)}{4}-\gamma)}. On the other hand, in dimensions 3 and 4, the existence of solutions depends on whether the domain has a positive “hyperbolic mass” a notion that we introduce and analyze therein.

Details

Language :
English
ISSN :
15361365 and 21690375
Volume :
18
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Advanced Nonlinear Studies
Publication Type :
Academic Journal
Accession number :
edsdoj.25595c2ea6944c08aa54c11820de94e7
Document Type :
article
Full Text :
https://doi.org/10.1515/ans-2018-2025