Back to Search
Start Over
Mass and Extremals Associated with the Hardy–Schrödinger Operator on Hyperbolic Space
- Source :
- Advanced Nonlinear Studies, Vol 18, Iss 4, Pp 671-689 (2018)
- Publication Year :
- 2018
- Publisher :
- De Gruyter, 2018.
-
Abstract
- We consider the Hardy–Schrödinger operator Lγ:=-Δ𝔹n-γV2{L_{\gamma}:=-\Delta_{\mathbb{B}^{n}}-\gamma{V_{2}}} on the Poincaré ball model of the hyperbolic space 𝔹n{\mathbb{B}^{n}} (n≥3{n\geq 3}). Here V2{V_{2}} is a radially symmetric potential, which behaves like the Hardy potential around its singularity at 0, i.e., V2(r)∼1r2{V_{2}(r)\sim\frac{1}{r^{2}}}. As in the Euclidean setting, Lγ{L_{\gamma}} is positive definite whenever γn-2n-4(n(n-4)4-γ){\lambda>\frac{n-2}{n-4}(\frac{n(n-4)}{4}-\gamma)}. On the other hand, in dimensions 3 and 4, the existence of solutions depends on whether the domain has a positive “hyperbolic mass” a notion that we introduce and analyze therein.
Details
- Language :
- English
- ISSN :
- 15361365 and 21690375
- Volume :
- 18
- Issue :
- 4
- Database :
- Directory of Open Access Journals
- Journal :
- Advanced Nonlinear Studies
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.25595c2ea6944c08aa54c11820de94e7
- Document Type :
- article
- Full Text :
- https://doi.org/10.1515/ans-2018-2025