Back to Search
Start Over
Retrieving CH4-emission rates from coal mine ventilation shafts using UAV-based AirCore observations and the genetic algorithm–interior point penalty function (GA-IPPF) model
- Source :
- Atmospheric Chemistry and Physics, Vol 22, Pp 13881-13896 (2022)
- Publication Year :
- 2022
- Publisher :
- Copernicus Publications, 2022.
-
Abstract
- There are plenty of monitoring methods to quantify gas emission rates based on gas concentration measurements around the strong sources. However, there is a lack of quantitative models to evaluate methane emission rates from coal mines with less prior information. In this study, we develop a genetic algorithm–interior point penalty function (GA-IPPF) model to calculate the emission rates of large point sources of CH4 based on concentration samples. This model can provide optimized dispersion parameters and self-calibration, thus lowering the requirements for auxiliary data accuracy. During the Carbon Dioxide and Methane Mission (CoMet) pre-campaign, we retrieve CH4-emission rates from a ventilation shaft in Pniówek coal mine (Silesia coal mining region, Poland) based on the data collected by an unmanned aerial vehicle (UAV)-based AirCore system and a GA-IPPF model. The concerned CH4-emission rates are variable even on a single day, ranging from 621.3 ± 19.8 to 1452.4 ± 60.5 kg h−1 on 18 August 2017 and from 348.4 ± 12.1 to 1478.4 ± 50.3 kg h−1 on 21 August 2017. Results show that CH4 concentration data reconstructed by the retrieved parameters are highly consistent with the measured ones. Meanwhile, we demonstrate the application of GA-IPPF in three gas control release experiments, and the accuracies of retrieved gas emission rates are better than 95.0 %. This study indicates that the GA-IPPF model can quantify the CH4-emission rates from strong point sources with high accuracy.
Details
- Language :
- English
- ISSN :
- 16807316 and 16807324
- Volume :
- 22
- Database :
- Directory of Open Access Journals
- Journal :
- Atmospheric Chemistry and Physics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.253857b876f14ce0b3433d50749f69c1
- Document Type :
- article
- Full Text :
- https://doi.org/10.5194/acp-22-13881-2022