Back to Search Start Over

Artificial intelligence for telemedicine diabetic retinopathy screening: a review

Authors :
Luis Filipe Nakayama
Lucas Zago Ribeiro
Frederico Novaes
Isabele Ayumi Miyawaki
Andresa Emy Miyawaki
Juliana Angélica Estevão de Oliveira
Talita Oliveira
Fernando Korn Malerbi
Caio Vinicius Saito Regatieri
Leo Anthony Celi
Paolo S. Silva
Source :
Annals of Medicine, Vol 55, Iss 2 (2023)
Publication Year :
2023
Publisher :
Taylor & Francis Group, 2023.

Abstract

AbstractPurpose This study aims to compare artificial intelligence (AI) systems applied in diabetic retinopathy (DR) teleophthalmology screening, currently deployed systems, fairness initiatives and the challenges for implementation.Methods The review included articles retrieved from PubMed/Medline/EMBASE literature search strategy regarding telemedicine, DR and AI. The screening criteria included human articles in English, Portuguese or Spanish and related to telemedicine and AI for DR screening. The author’s affiliations and the study’s population income group were classified according to the World Bank Country and Lending Groups.Results The literature search yielded a total of 132 articles, and nine were included after full-text assessment. The selected articles were published between 2004 and 2020 and were grouped as telemedicine systems, algorithms, economic analysis and image quality assessment. Four telemedicine systems that perform a quality assessment, image preprocessing and pathological screening were reviewed. A data and post-deployment bias assessment are not performed in any of the algorithms, and none of the studies evaluate the social impact implementations. There is a lack of representativeness in the reviewed articles, with most authors and target populations from high-income countries and no low-income country representation.Conclusions Telemedicine and AI hold great promise for augmenting decision-making in medical care, expanding patient access and enhancing cost-effectiveness. Economic studies and social science analysis are crucial to support the implementation of AI in teleophthalmology screening programs. Promoting fairness and generalizability in automated systems combined with telemedicine screening programs is not straightforward. Improving data representativeness, reducing biases and promoting equity in deployment and post-deployment studies are all critical steps in model development.

Details

Language :
English
ISSN :
07853890 and 13652060
Volume :
55
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Annals of Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.251fbcb129c448cda70f01f49d06f363
Document Type :
article
Full Text :
https://doi.org/10.1080/07853890.2023.2258149