Back to Search Start Over

Evaluation method for the hyperspectral image camouflage effect based on multifeature description and grayscale clustering

Authors :
Zhenxin He
Yuanying Gan
Shixin Ma
Chuntong Liu
Zhongye Liu
Source :
EURASIP Journal on Advances in Signal Processing, Vol 2023, Iss 1, Pp 1-16 (2023)
Publication Year :
2023
Publisher :
SpringerOpen, 2023.

Abstract

Abstract Hyperspectral images have a special attribute with both spectral and spatial information, which is of great significance for the evaluation of the stealth performance of camouflaged targets. Aiming at the problems of a single evaluation index and the low credibility of traditional optical camouflage evaluation methods, this paper proposes a grayscale clustering camouflage effect evaluation method based on multifeature descriptions of hyperspectral images using similarity indicators that reflect different spectral characteristics of the target and background. From the perspective of spectrum and human visual contrast, a comprehensive evaluation index system including spectral distance feature, spectral derivative feature, curve shape feature and spatial texture feature is constructed by combining spatial–spectral multi-feature constraints. At the same time, an improved Delphi method is proposed to simulate the expert decision-making process, and better evaluation weights are obtained by comparison and screening. The comprehensive evaluation of camouflage effect based on whitening function gray clustering is realized. The proposed method can not only give the “excellent” and “bad” of camouflage effect qualitatively, but also calculate the comprehensive score of camouflage effect by model.

Details

Language :
English
ISSN :
16876180
Volume :
2023
Issue :
1
Database :
Directory of Open Access Journals
Journal :
EURASIP Journal on Advances in Signal Processing
Publication Type :
Academic Journal
Accession number :
edsdoj.25100c2573c4b758c5336888ae7eef1
Document Type :
article
Full Text :
https://doi.org/10.1186/s13634-023-00971-x