Back to Search Start Over

Fluid-dynamic Simulations for Assessment of Dimensioning ‎Methodologies of Pelton Turbine Buckets Considering the Initial ‎Torque Overcoming

Authors :
Jorge Mario Ceballos Zuluaga
Cesar Augusto Isaza Merino
Iván David Patiño Arcila
Andrés David Morales Rojas
Source :
Journal of Applied and Computational Mechanics, Vol 9, Iss 4, Pp 1036-1048 (2023)
Publication Year :
2023
Publisher :
Shahid Chamran University of Ahvaz, 2023.

Abstract

The growing demand for energy resources highlights the need to optimize traditional energy transformation systems. Pelton-type turbines, which are extensively used in micro-generation systems, can be designed using different methodologies, however, no consensus has been reached on which methodology guarantees greater efficiency. This work aims to compare the fluid-dynamic behavior at the first-time instants of Pelton turbines for micro-generation dimensioned by three different methodologies, namely, OLADE, Nechleba, and Thake, evaluating their capacity to overcome the initial torque. The results show that OLADE methodology leads to the best fluid-dynamic performance, whereas Nechleba fails to overcome the prescribed torque. In the Thake methodology, the impact of water on the back face of buckets and the formation of reverse pressure gradients can counter the turbine rotation.

Details

Language :
English
ISSN :
23834536
Volume :
9
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Journal of Applied and Computational Mechanics
Publication Type :
Academic Journal
Accession number :
edsdoj.249a3a4106c42f38f26f3ab3c58217d
Document Type :
article
Full Text :
https://doi.org/10.22055/jacm.2023.42512.3935