Back to Search Start Over

83 Automated PDMS Engraving and Assembly of a Prototype Microfluidic Artificial Lung

Authors :
Andrew Zhang
Jennifer Wang
Gabriele Seilo
Kartik Tharwani
Joseph A Potkay
Source :
Journal of Clinical and Translational Science, Vol 8, Pp 22-22 (2024)
Publication Year :
2024
Publisher :
Cambridge University Press, 2024.

Abstract

OBJECTIVES/GOALS: We report an automated manufacturing system, and a series of cylindrical multi-layer microfluidic artificial lungs manufactured with the system and tested for fluidic fidelity and function. METHODS/STUDY POPULATION: A Roll-to-Roll (R2R) system to engrave multiple-layer devices was assembled. A 100 um-thick silicone sheet passes through an embedded CO2 laser engraver, which creates patterns of any geometry on the surface. The sheet is plasma-activated to create an irreversible bond, and rerolled into a processed device. Unlike typical applications of R2R, this process is synchronized to achieve consistent radial positioning. This allows the fluidics in the device to be accessed without being unwrapped. The result is a cylindrical core surrounded by many layers of microfluidic channels that can be accessed through the side of the device or through fluidic vias. This core is cut to expose the microfluidic layers, and then installed into a housing which routes the fluids into their respective microfluidic flow paths. RESULTS/ANTICIPATED RESULTS: To demonstrate the capabilities of the R2R manufacturing system, this method was used to manufacture multi-layer microfluidic artificial lungs (µALs). Gas and blood flow channels are engraved in alternating layers and routed orthogonally. The close proximity of gas and blood separated by gas-permeable PDMS permits CO2 and O2 exchange. Three µALs were successfully manufactured. Their flow paths were visualized using dyed water and checked for leaks. Then they were evaluated using water for pressure drop and CO2 gas-exchange. The top performing device had 15 alternating blood and gas layers. Test with whole blood demonstrated oxygenation from venous (70%) saturation levels to arterial (95%) saturation levels at a flow rate of 3 ml/min. DISCUSSION/SIGNIFICANCE: The ability to cost-effectively produce high surface area microfluidic devices would bring many small-scale technologies from the realm of research to clinical and commercial applications. In particular, most microfluidic artificial lungs only have small rated flows due to a lack of manufacturing processes able to create high surface area devices.

Subjects

Subjects :
Medicine

Details

Language :
English
ISSN :
20598661
Volume :
8
Database :
Directory of Open Access Journals
Journal :
Journal of Clinical and Translational Science
Publication Type :
Academic Journal
Accession number :
edsdoj.24904329dee34741adf763e4165a2b32
Document Type :
article
Full Text :
https://doi.org/10.1017/cts.2024.83