Back to Search
Start Over
Burst c-VEP Based BCI: Optimizing stimulus design for enhanced classification with minimal calibration data and improved user experience
- Source :
- NeuroImage, Vol 284, Iss , Pp 120446- (2023)
- Publication Year :
- 2023
- Publisher :
- Elsevier, 2023.
-
Abstract
- The utilization of aperiodic flickering visual stimuli under the form of code-modulated Visual Evoked Potentials (c-VEP) represents a pivotal advancement in the field of reactive Brain–Computer Interface (rBCI). A major advantage of the c-VEP approach is that the training of the model is independent of the number and complexity of targets, which helps reduce calibration time. Nevertheless, the existing designs of c-VEP stimuli can be further improved in terms of visual user experience but also to achieve a higher signal-to-noise ratio, while shortening the selection time and calibration process. In this study, we introduce an innovative variant of code-VEP, referred to as “Burst c-VEP”. This original approach involves the presentation of short bursts of aperiodic visual flashes at a deliberately slow rate, typically ranging from two to four flashes per second. The rationale behind this design is to leverage the sensitivity of the primary visual cortex to transient changes in low-level stimuli features to reliably elicit distinctive series of visual evoked potentials. In comparison to other types of faster-paced code sequences, burst c-VEP exhibit favorable properties to achieve high bitwise decoding performance using convolutional neural networks (CNN), which yields potential to attain faster selection time with the need for less calibration data. Furthermore, our investigation focuses on reducing the perceptual saliency of c-VEP through the attenuation of visual stimuli contrast and intensity to significantly improve users’ visual comfort. The proposed solutions were tested through an offline 4-classes c-VEP protocol involving 12 participants. Following a factorial design, participants were instructed to focus on c-VEP targets whose pattern (burst and maximum-length sequences) and amplitude (100% or 40% amplitude depth modulations) were manipulated across experimental conditions. Firstly, the full amplitude burst c-VEP sequences exhibited higher accuracy, ranging from 90.5% (with 17.6s of calibration data) to 95.6% (with 52.8s of calibration data), compared to its m-sequence counterpart (71.4% to 85.0%). The mean selection time for both types of codes (1.5 s) compared favorably to reports from previous studies. Secondly, our findings revealed that lowering the intensity of the stimuli only slightly decreased the accuracy of the burst code sequences to 94.2% while leading to substantial improvements in terms of user experience. Taken together, these results demonstrate the high potential of the proposed burst codes to advance reactive BCI both in terms of performance and usability. The collected dataset, along with the proposed CNN architecture implementation, are shared through open-access repositories.
Details
- Language :
- English
- ISSN :
- 10959572
- Volume :
- 284
- Issue :
- 120446-
- Database :
- Directory of Open Access Journals
- Journal :
- NeuroImage
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.2458b10c1b740ff99387156f1f50729
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.neuroimage.2023.120446