Back to Search Start Over

Iodine's impact on tropospheric oxidants: a global model study in GEOS-Chem

Authors :
T. Sherwen
M. J. Evans
L. J. Carpenter
S. J. Andrews
R. T. Lidster
B. Dix
T. K. Koenig
R. Sinreich
I. Ortega
R. Volkamer
A. Saiz-Lopez
C. Prados-Roman
A. S. Mahajan
C. Ordóñez
Source :
Atmospheric Chemistry and Physics, Vol 16, Pp 1161-1186 (2016)
Publication Year :
2016
Publisher :
Copernicus Publications, 2016.

Abstract

We present a global simulation of tropospheric iodine chemistry within the GEOS-Chem chemical transport model. This includes organic and inorganic iodine sources, standard gas-phase iodine chemistry, and simplified higher iodine oxide (I2OX, X = 2, 3, 4) chemistry, photolysis, deposition, and parametrized heterogeneous reactions. In comparisons with recent iodine oxide (IO) observations, the simulation shows an average bias of ∼ +90 % with available surface observations in the marine boundary layer (outside of polar regions), and of ∼ +73 % within the free troposphere (350 hPa p −1) are overwhelmingly dominated by the inorganic ocean source, with 76 % of this emission from hypoiodous acid (HOI). HOI is also found to be the dominant iodine species in terms of global tropospheric IY burden (contributing up to 70 %). The iodine chemistry leads to a significant global tropospheric O3 burden decrease (9.0 %) compared to standard GEOS-Chem (v9-2). The iodine-driven OX loss rate1 (748 Tg OX yr−1) is due to photolysis of HOI (78 %), photolysis of OIO (21 %), and reaction between IO and BrO (1 %). Increases in global mean OH concentrations (1.8 %) by increased conversion of hydroperoxy radicals exceeds the decrease in OH primary production from the reduced O3 concentration. We perform sensitivity studies on a range of parameters and conclude that the simulation is sensitive to choices in parametrization of heterogeneous uptake, ocean surface iodide, and I2OX (X = 2, 3, 4) photolysis. The new iodine chemistry combines with previously implemented bromine chemistry to yield a total bromine- and iodine-driven tropospheric O3 burden decrease of 14.4 % compared to a simulation without iodine and bromine chemistry in the model, and a small increase in OH (1.8 %). This is a significant impact and so halogen chemistry needs to be considered in both climate and air quality models. 1 Here OX is defined as O3 + NO2 + 2NO3 + PAN + PMN+PPN + HNO4 + 3N2O5 + HNO3 + BrO + HOBr + BrNO2+2BrNO3 + MPN + IO + HOI + INO2 + 2INO3 + 2OIO+2I2O2 + 3I2O3 + 4I2O4, where PAN = peroxyacetyl nitrate, PPN = peroxypropionyl nitrate, MPN = methyl peroxy nitrate, and MPN = peroxymethacryloyl nitrate.

Subjects

Subjects :
Physics
QC1-999
Chemistry
QD1-999

Details

Language :
English
ISSN :
16807316 and 16807324
Volume :
16
Database :
Directory of Open Access Journals
Journal :
Atmospheric Chemistry and Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.23fe402d854c4a38a6aa22724c079a68
Document Type :
article
Full Text :
https://doi.org/10.5194/acp-16-1161-2016