Back to Search Start Over

Umbilical mesenchymal stem cell-derived exosomes promote spinal cord functional recovery through the miR-146b/TLR4 -mediated NF-κB p65 signaling pathway in rats

Authors :
Xiujuan Wang
Ying Yang
Wei Li
MingYuan Hao
YongSheng Xu
Source :
Biochemistry and Biophysics Reports, Vol 35, Iss , Pp 101497- (2023)
Publication Year :
2023
Publisher :
Elsevier, 2023.

Abstract

Spinal cord injury (SCI) is an incurable central nervous system impairment that lack of efficient treatment. Exosomes derived from mesenchymal stem cells (MSCs) are widely applied in disease treatment. This work aimed to determine the promising therapeutic effects of MSC-derived exosomal miRNA146b on SCI. A rat spinal cord injury (SCI) model and lipopolysaccharide (LPS)-induced PC12 cell model were established. Exosomes were extracted from human umbilical cord mesenchymal stem cells (hUCMSCs). The identification of exosomes was performed by using transmission electronic microscope (TEM) and nanoparticle tracking analysis (NTA). Hematoxylin and eosin (HE) staining and TUNEL assay were performed to assess tissue damage and apoptosis, respectively. ELISA was performed to detect levels of inflammatory cytokines. Cell viability was checked by cell counting kit 8 (CCK-8). Gene expression and protein levels were detected by qPCR and western blotting assay. The interaction between miR-146 b and Toll-like receptor 4 (TLR4) was assessed by luciferase reporter gene assay. The hUCMSC-derived exosomes could notably alleviate the spinal cord injury and cell apoptosis. The exosomal miR-146 b treatment suppressed the release of IL-1 β, IL-6, and TNFα. The miR-146 b suppressed the expression of TLR4, directly interact with the 3′-untranslated region (3′UTR) of TLR4, and inactivated the nuclear factor κB (NF-κB) signaling. The hUCMSCs-derived exosomal miR-146 b protects neurons from spinal cord injury through targeting the TLR4 and inactivating the NF-κB signaling. Our findings supported the application of hUCMSCs-derived exosomal miR-146 b for the protection of SCI.

Details

Language :
English
ISSN :
24055808
Volume :
35
Issue :
101497-
Database :
Directory of Open Access Journals
Journal :
Biochemistry and Biophysics Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.236fb64cc23144078a2d81c03db98ae8
Document Type :
article
Full Text :
https://doi.org/10.1016/j.bbrep.2023.101497