Back to Search Start Over

Prediction of Significant Wave Height in Offshore China Based on the Machine Learning Method

Authors :
Zhijie Feng
Po Hu
Shuiqing Li
Dongxue Mo
Source :
Journal of Marine Science and Engineering, Vol 10, Iss 6, p 836 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Accurate wave prediction can help avoid disasters. In this study, the significant wave height (SWH) prediction performances of the recurrent neural network (RNN), long short-term memory network (LSTM), and gated recurrent unit network (GRU) were compared. The 10 m u-component of wind (U10), 10 m v-component of wind (V10), and SWH of the previous 24 h were used as input parameters to predict the SWHs of the future 1, 3, 6, 12, and 24 h. The SWH prediction model was established at three different sites located in the Bohai Sea, the East China Sea, and the South China Sea, separately. The experimental results show that the performance of LSTM and GRU networks based on the gating mechanism was better than that of traditional RNNs, and the performances of the LSTM and GRU networks were comparable. The EMD method was found to be useful in the improvement of the LSTM network to forecast the significant wave heights of 12 and 24 h.

Details

Language :
English
ISSN :
20771312
Volume :
10
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Journal of Marine Science and Engineering
Publication Type :
Academic Journal
Accession number :
edsdoj.233f451772f42358d8e6aea2044a056
Document Type :
article
Full Text :
https://doi.org/10.3390/jmse10060836