Back to Search
Start Over
Prediction of Significant Wave Height in Offshore China Based on the Machine Learning Method
- Source :
- Journal of Marine Science and Engineering, Vol 10, Iss 6, p 836 (2022)
- Publication Year :
- 2022
- Publisher :
- MDPI AG, 2022.
-
Abstract
- Accurate wave prediction can help avoid disasters. In this study, the significant wave height (SWH) prediction performances of the recurrent neural network (RNN), long short-term memory network (LSTM), and gated recurrent unit network (GRU) were compared. The 10 m u-component of wind (U10), 10 m v-component of wind (V10), and SWH of the previous 24 h were used as input parameters to predict the SWHs of the future 1, 3, 6, 12, and 24 h. The SWH prediction model was established at three different sites located in the Bohai Sea, the East China Sea, and the South China Sea, separately. The experimental results show that the performance of LSTM and GRU networks based on the gating mechanism was better than that of traditional RNNs, and the performances of the LSTM and GRU networks were comparable. The EMD method was found to be useful in the improvement of the LSTM network to forecast the significant wave heights of 12 and 24 h.
Details
- Language :
- English
- ISSN :
- 20771312
- Volume :
- 10
- Issue :
- 6
- Database :
- Directory of Open Access Journals
- Journal :
- Journal of Marine Science and Engineering
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.233f451772f42358d8e6aea2044a056
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/jmse10060836