Back to Search Start Over

Highly Strain‐Stable Intrinsically Stretchable Olfactory Sensors for Imperceptible Health Monitoring

Authors :
Guodong Zhao
Jing Sun
Mingxin Zhang
Shanlei Guo
Xue Wang
Juntong Li
Yanhong Tong
Xiaoli Zhao
Qingxin Tang
Yichun Liu
Source :
Advanced Science, Vol 10, Iss 29, Pp n/a-n/a (2023)
Publication Year :
2023
Publisher :
Wiley, 2023.

Abstract

Abstract Intrinsically stretchable gas sensors possess outstanding advantages in seamless conformability and high‐comfort wearability for real‐time detection toward skin/respiration gases, making them promising candidates for health monitoring and non‐invasive disease diagnosis and therapy. However, the strain‐induced deformation of the sensitive semiconductor layers possibly causes the sensing signal drift, resulting in failure in achievement of the reliable gas detection. Herein, a surprising result that the stretchable organic polymers present a universal strain‐insensitive gas sensing property is shown. All the stretchable polymers with different degrees of crystallinity, including indacenodithiophene‐benzothiadiazole (PIDTBT), diketo‐pyrrolo‐pyrrole bithiophene thienothiophene (DPPT‐TT) and poly[4‐(4,4‐dihexadecyl‐4H‐cyclopenta[1,2‐b:5,4‐b′]dithiophen‐2‐yl)‐alt‐[1,2,5]thiad‐iazolo [3,4‐c] pyridine] (PCDTPT), show almost unchanged gas response signals in the different stretching states. This outstanding advantage enables the intrinsically stretchable devices to imperceptibly adhere on human skin and well conform to the versatile deformations such as bending, twisting, and stretching, with the highly strain‐stable gas sensing property. The intrinsically stretchable PIDTBT sensor also demonstrates the excellent selectivity toward the skin‐emitted trimethylamine (TMA) gas, with a theoretical limit of detection as low as 0.3 ppb. The work provides new insights into the preparation of the reliable skin‐like gas sensors and highlights the potential applications in the real‐time detection of skin gas and respiration gas for non‐invasive medical treatment and disease diagnosis.

Details

Language :
English
ISSN :
21983844
Volume :
10
Issue :
29
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.22d4f3f09a054845b05e17f88a5a1463
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202302974