Back to Search Start Over

Prediction of neovascular age-related macular degeneration recurrence using optical coherence tomography images with a deep neural network

Authors :
Juho Jung
Jinyoung Han
Jeong Mo Han
Junseo Ko
Jeewoo Yoon
Joon Seo Hwang
Ji In Park
Gyudeok Hwang
Jae Ho Jung
Daniel Duck-Jin Hwang
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-12 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Neovascular age-related macular degeneration (nAMD) can result in blindness if left untreated, and patients often require repeated anti-vascular endothelial growth factor injections. Although, the treat-and-extend method is becoming popular to reduce vision loss attributed to recurrence, it may pose a risk of overtreatment. This study aimed to develop a deep learning model based on DenseNet201 to predict nAMD recurrence within 3 months after confirming dry-up 1 month following three loading injections in treatment-naïve patients. A dataset of 1076 spectral domain optical coherence tomography (OCT) images from 269 patients diagnosed with nAMD was used. The performance of the model was compared with that of 6 ophthalmologists, using 100 randomly selected samples. The DenseNet201-based model achieved 53.0% accuracy in predicting nAMD recurrence using a single pre-injection image and 60.2% accuracy after viewing all the images immediately after the 1st, 2nd, and 3rd injections. The model outperformed experienced ophthalmologists, with an average accuracy of 52.17% using a single pre-injection image and 53.3% after examining four images before and after three loading injections. In conclusion, the artificial intelligence model demonstrated a promising ability to predict nAMD recurrence using OCT images and outperformed experienced ophthalmologists. These findings suggest that deep learning models can assist in nAMD recurrence prediction, thus improving patient outcomes and optimizing treatment strategies.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.22ac9a423210466fae99680565f5fdad
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-56309-6