Back to Search
Start Over
A distinct and reproducible teleconnection pattern over North America during extreme El Niño events
- Source :
- Scientific Reports, Vol 14, Iss 1, Pp 1-12 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract El Niño-Southern Oscillation (ENSO) teleconnections are an important predictability source for extratropical seasonal climate forecasts. Previous studies suggest that the ENSO teleconnection pattern depends on the ENSO phase (El Niño vs. La Niña) and/or Sea Surface Temperature (SST) pattern (central Pacific vs. eastern Pacific El Niño events). Observations and ensemble simulations with the CNRM-CM6.1 atmospheric general circulation model indicate that only extreme El Niño events (e.g. 1982–1983, 1997–1998, 2015–2016) display a statistically significant eastward shift relative to the well-known Pacific-North American teleconnection pattern that occurs during both central and eastern Pacific moderate El Niño or during La Niña. This specific teleconnection pattern emerges when equatorial SST anomalies are both eastward-shifted and sufficiently large to exceed the deep atmospheric convection threshold over most of the eastern Pacific, resulting in a basin-wide reorganization of tropospheric heat sources. It yields> 0.5 std wet conditions over Western United States (74% likelihood) as well as> 0.5 std warm anomalies over Canada and the Northern United States (71% likelihood), with more consistency across events and ensemble members than for any other El Niño or La Niña type. These findings hold important implications for the seasonal forecasting of El Niño’s impacts on the North American climate.
Details
- Language :
- English
- ISSN :
- 20452322 and 26604337
- Volume :
- 14
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.22a0163507ff4045a1f43fd26604337f
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-024-52580-9