Back to Search Start Over

Prediction of the Fundus Tessellation Severity With Machine Learning Methods

Authors :
Lei Shao
Xiaomei Zhang
Teng Hu
Yang Chen
Chuan Zhang
Li Dong
Saiguang Ling
Zhou Dong
Wen Da Zhou
Rui Heng Zhang
Lei Qin
Wen Bin Wei
Source :
Frontiers in Medicine, Vol 9 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

PurposeTo predict the fundus tessellation (FT) severity with machine learning methods.MethodsA population-based cross-sectional study with 3,468 individuals (mean age of 64.6 ± 9.8 years) based on Beijing Eye Study 2011. Participants underwent detailed ophthalmic examinations including fundus images. Five machine learning methods including ordinal logistic regression, ordinal probit regression, ordinal log-gamma regression, ordinal forest and neural network were used.Main Outcome MeasureFT precision, recall, F1-score, weighted-average F1-score and AUC value.ResultsObserved from the in-sample fitting performance, the optimal model was ordinal forest, which had correct classification rate (precision) of 81.28%, while 34.75, 93.73, 70.03, and 24.82% in each classified group by FT severity. The AUC value was 0.7249. And the F1-score was 65.05%, weighted-average F1-score was 79.64% on the whole dataset. For out-of-sample prediction performance, the optimal model was ordinal logistic regression, which had precision of 77.12% on the validation dataset, while 19.57, 92.68, 64.74, and 6.76% in each classified group by FT severity. The AUC value was 0.7187. The classification accuracy of light FT group was the highest, while that of severe FT group was the lowest. And the F1-score was 54.46%, weighted-average F1-score was 74.19% on the whole dataset.ConclusionsThe ordinal forest and ordinal logistic regression model had the strong prediction in-sample and out-sample performance, respectively. The threshold ranges of the ordinal forest model for no FT and light, moderate, severe FT were [0, 0.3078], [0.3078, 0.3347], [0.3347, 0.4048], [0.4048, 1], respectively. Likewise, the threshold ranges of ordinal logistic regression model were ≤ 3.7389, [3.7389, 10.5053], [10.5053, 13.9323], > 13.9323. These results can be applied to guide clinical fundus disease screening and FT severity assessment.

Details

Language :
English
ISSN :
2296858X
Volume :
9
Database :
Directory of Open Access Journals
Journal :
Frontiers in Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.2261fed437664ed289ab63114e9575de
Document Type :
article
Full Text :
https://doi.org/10.3389/fmed.2022.817114