Back to Search Start Over

A comparative study of non-covalent encapsulation methods for organic dyes into silica nanoparticles

Authors :
Auger Aurélien
Samuel Jorice
Poncelet Olivier
Raccurt Olivier
Source :
Nanoscale Research Letters, Vol 6, Iss 1, p 328 (2011)
Publication Year :
2011
Publisher :
SpringerOpen, 2011.

Abstract

Abstract Numerous luminophores may be encapsulated into silica nanoparticles (< 100 nm) using the reverse microemulsion process. Nevertheless, the behaviour and effect of such luminescent molecules appear to have been much less studied and may possibly prevent the encapsulation process from occurring. Such nanospheres represent attractive nanoplatforms for the development of biotargeted biocompatible luminescent tracers. Physical and chemical properties of the encapsulated molecules may be affected by the nanomatrix. This study examines the synthesis of different types of dispersed silica nanoparticles, the ability of the selected luminophores towards incorporation into the silica matrix of those nanoobjects as well as the photophysical properties of the produced dye-doped silica nanoparticles. The nanoparticles present mean diameters between 40 and 60 nm as shown by TEM analysis. Mainly, the photophysical characteristics of the dyes are retained upon their encapsulation into the silica matrix, leading to fluorescent silica nanoparticles. This feature article surveys recent research progress on the fabrication strategies of these dye-doped silica nanoparticles.

Details

Language :
English
ISSN :
19317573 and 1556276X
Volume :
6
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nanoscale Research Letters
Publication Type :
Academic Journal
Accession number :
edsdoj.2248fdbba746b6b1b410906809943a
Document Type :
article