Back to Search Start Over

The perturbation of Drazin inverse and dual Drazin inverse

Authors :
Wang Hongxing
Cui Chong
Wei Yimin
Source :
Special Matrices, Vol 12, Iss 1, Pp 381-395 (2024)
Publication Year :
2024
Publisher :
De Gruyter, 2024.

Abstract

In this study, we derive the Drazin inverse (A+εB)D{\left(A+\varepsilon B)}^{D} of the complex matrix A+εBA+\varepsilon B with Ind(A+εB)>1{\rm{Ind}}\left(A+\varepsilon B)\gt 1 and Ind(A)=k{\rm{Ind}}\left(A)=k and the group inverse (A+εB)#{\left(A+\varepsilon B)}^{\#} of the complex matrix A+εBA+\varepsilon B with Ind(A+εB)=1{\rm{Ind}}\left(A+\varepsilon B)=1 and Ind(A)=k{\rm{Ind}}\left(A)=k when εB\varepsilon B is viewed as the perturbation of AA. If the dual Drazin inverse (DDGI) A^DDGI{\widehat{A}}^{{\rm{DDGI}}} of A^\widehat{A} is considered as a notation. We calculate (A+εB)D−A^DDGI{\left(A+\varepsilon B)}^{D}-{\widehat{A}}^{{\rm{DDGI}}} and (A+εB)#−A^DDGI{\left(A+\varepsilon B)}^{\#}-{\widehat{A}}^{{\rm{DDGI}}} and obtain ‖(A+εB)D−A^DDGI‖P∈O(ε2)\Vert {\left(A+\varepsilon B)}^{D}-{\widehat{A}}^{{\rm{DDGI}}}{\Vert }_{P}\in {\mathcal{O}}\left({\varepsilon }^{2}) and ‖(A+εB)#−A^DDGI‖P∈O(ε2)\Vert {\left(A+\varepsilon B)}^{\#}-{\widehat{A}}^{{\rm{DDGI}}}{\Vert }_{P}\in {\mathcal{O}}\left({\varepsilon }^{2}). Meanwhile, we give some examples to verify these conclusions.

Details

Language :
English
ISSN :
23007451
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Special Matrices
Publication Type :
Academic Journal
Accession number :
edsdoj.2248bd5892e44bf8885f3741251a1d9f
Document Type :
article
Full Text :
https://doi.org/10.1515/spma-2023-0110