Back to Search Start Over

A Micron-Range Displacement Sensor Based on Thermo-Optically Tuned Whispering Gallery Modes in a Microcapillary Resonator

Authors :
Zhe Wang
Arun Kumar Mallik
Fangfang Wei
Zhuochen Wang
Anuradha Rout
Qiang Wu
Yuliya Semenova
Source :
Sensors, Vol 22, Iss 21, p 8312 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

A novel micron-range displacement sensor based on a whispering-gallery mode (WGM) microcapillary resonator filled with a nematic liquid crystal (LC) and a magnetic nanoparticle- coated fiber half-taper is proposed and experimentally demonstrated. In the proposed device, the tip of a fiber half-taper coated with a thin layer of magnetic nanoparticles (MNPs) moves inside the LC-filled microcapillary resonator along its axis. The input end of the fiber half-taper is connected to a pump laser source and due to the thermo-optic effect within the MNPs, the fiber tip acts as point heat source increasing the temperature of the LC material in its vicinity. An increase in the LC temperature leads to a decrease in its effective refractive index, which in turn causes spectral shift of the WGM resonances monitored in the transmission spectrum of the coupling fiber. The spectral shift of the WGMs is proportional to the displacement of the MNP-coated tip with respect to the microcapillary’s light coupling point. The sensor’s operation is simulated considering heat transfer in the microcapillary filled with a LC material having a negative thermo-optic coefficient. The simulations are in a good agreement with the WGMs spectral shift observed experimentally. A sensitivity to displacement of 15.44 pm/µm and a response time of 260 ms were demonstrated for the proposed sensor. The device also shows good reversibility and repeatability of response. The proposed micro-displacement sensor has potential applications in micro-manufacturing, precision measurement and medical instruments.

Details

Language :
English
ISSN :
14248220
Volume :
22
Issue :
21
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.22203e4a27a456c802a71d82f94c708
Document Type :
article
Full Text :
https://doi.org/10.3390/s22218312