Back to Search
Start Over
Transcriptomic analysis of the cerebral hippocampal tissue in spontaneously hypertensive rats exposed to acute hypobaric hypoxia: associations with inflammation and energy metabolism
- Source :
- Scientific Reports, Vol 13, Iss 1, Pp 1-11 (2023)
- Publication Year :
- 2023
- Publisher :
- Nature Portfolio, 2023.
-
Abstract
- Abstract We evaluated the effect of acute hypobaric hypoxia (AHH) on the hippocampal region of the brain in early-stage spontaneously hypertensive male rats. The rats were classified into a control (ground level; ~ 400 m altitude) group and an AHH experimental group placed in an animal hypobaric chamber at a simulated altitude of 5500 m for 24 h. RNA-Seq analysis of the brains and hippocampi showed that differentially expressed genes (DEGs) were primarily associated with ossification, fibrillar collagen trimer, and platelet-derived growth factor binding. The DEGs were classified into functional categories including general function prediction, translation, ribosomal structure and biogenesis, replication, recombination, and repair. Pathway enrichment analysis revealed that the DEGs were primarily associated with relaxin signaling, PI3K-Akt signaling, and amoebiasis pathways. Protein–protein interaction network analysis indicated that 48 DEGs were involved in both inflammation and energy metabolism. Further, we performed validation experiments to show that nine DEGs were closely associated with inflammation and energy metabolism, of which two (Vegfa and Angpt2) and seven (Acta2, Nfkbia, Col1a1, Edn1, Itga1, Ngfr, and Sgk1) genes showed up and downregulated expression, respectively. Collectively, these results indicated that inflammation and energy metabolism-associated gene expression in the hippocampus was altered in early-stage hypertension upon AHH exposure.
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 13
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.21d13458454e4baa9b6c0af9ef21d84e
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-023-30682-0