Back to Search Start Over

Photo‐Induced Charge State Dynamics of the Neutral and Negatively Charged Silicon Vacancy Centers in Room‐Temperature Diamond

Authors :
G. Garcia‐Arellano
G. I. López‐Morales
N. B. Manson
J. Flick
A. A. Wood
C. A. Meriles
Source :
Advanced Science, Vol 11, Iss 22, Pp n/a-n/a (2024)
Publication Year :
2024
Publisher :
Wiley, 2024.

Abstract

Abstract The silicon vacancy (SiV) center in diamond is drawing much attention due to its optical and spin properties, attractive for quantum information processing and sensing. Comparatively little is known, however, about the dynamics governing SiV charge state interconversion mainly due to challenges associated with generating, stabilizing, and characterizing all possible charge states, particularly at room temperature. Here, multi‐color confocal microscopy and density functional theory are used to examine photo‐induced SiV recombination — from neutral, to single‐, to double‐negatively charged — over a broad spectral window in chemical‐vapor‐deposition (CVD) diamond under ambient conditions. For the SiV0 to SiV‐ transition, a linear growth of the photo‐recombination rate with laser power at all observed wavelengths is found, a hallmark of single photon dynamics. Laser excitation of SiV‒, on the other hand, yields only fractional recombination into SiV2‒, a finding that is interpreted in terms of a photo‐activated electron tunneling process from proximal nitrogen atoms.

Details

Language :
English
ISSN :
21983844
Volume :
11
Issue :
22
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.21cea25bc587482091fab5ec50e024a1
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202308814