Back to Search Start Over

Intrinsic factors driving mosquito vector competence and viral evolution: a review

Authors :
Juliette Lewis
Emily N. Gallichotte
Jenna Randall
Arielle Glass
Brian D. Foy
Gregory D. Ebel
Rebekah C. Kading
Source :
Frontiers in Cellular and Infection Microbiology, Vol 13 (2023)
Publication Year :
2023
Publisher :
Frontiers Media S.A., 2023.

Abstract

Mosquitoes are responsible for the transmission of numerous viruses of global health significance. The term “vector competence” describes the intrinsic ability of an arthropod vector to transmit an infectious agent. Prior to transmission, the mosquito itself presents a complex and hostile environment through which a virus must transit to ensure propagation and transmission to the next host. Viruses imbibed in an infectious blood meal must pass in and out of the mosquito midgut, traffic through the body cavity or hemocoel, invade the salivary glands, and be expelled with the saliva when the vector takes a subsequent blood meal. Viruses encounter physical, cellular, microbial, and immunological barriers, which are influenced by the genetic background of the mosquito vector as well as environmental conditions. Collectively, these factors place significant selective pressure on the virus that impact its evolution and transmission. Here, we provide an overview of the current state of the field in understanding the mosquito-specific factors that underpin vector competence and how each of these mechanisms may influence virus evolution.

Details

Language :
English
ISSN :
22352988
Volume :
13
Database :
Directory of Open Access Journals
Journal :
Frontiers in Cellular and Infection Microbiology
Publication Type :
Academic Journal
Accession number :
edsdoj.21c56c58b45943248e5120db96effe7b
Document Type :
article
Full Text :
https://doi.org/10.3389/fcimb.2023.1330600