Back to Search Start Over

X-rays radiomics-based machine learning classification of atypical cartilaginous tumour and high-grade chondrosarcoma of long bonesResearch in context

Authors :
Salvatore Gitto
Alessio Annovazzi
Kitija Nulle
Matteo Interlenghi
Christian Salvatore
Vincenzo Anelli
Jacopo Baldi
Carmelo Messina
Domenico Albano
Filippo Di Luca
Elisabetta Armiraglio
Antonina Parafioriti
Alessandro Luzzati
Roberto Biagini
Isabella Castiglioni
Luca Maria Sconfienza
Source :
EBioMedicine, Vol 101, Iss , Pp 105018- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Summary: Background: Atypical cartilaginous tumour (ACT) and high-grade chondrosarcoma (CS) of long bones are respectively managed with active surveillance or curettage and wide resection. Our aim was to determine diagnostic performance of X-rays radiomics-based machine learning for classification of ACT and high-grade CS of long bones. Methods: This retrospective, IRB-approved study included 150 patients with surgically treated and histology-proven lesions at two tertiary bone sarcoma centres. At centre 1, the dataset was split into training (n = 71 ACT, n = 24 high-grade CS) and internal test (n = 19 ACT, n = 6 high-grade CS) cohorts, respectively, based on the date of surgery. At centre 2, the dataset constituted the external test cohort (n = 12 ACT, n = 18 high-grade CS). Manual segmentation was performed on frontal view X-rays, using MRI or CT for preliminary identification of lesion margins. After image pre-processing, radiomic features were extracted. Dimensionality reduction included stability, coefficient of variation, and mutual information analyses. In the training cohort, after class balancing, a machine learning classifier (Support Vector Machine) was automatically tuned using nested 10-fold cross-validation. Then, it was tested on both the test cohorts and compared to two musculoskeletal radiologists' performance using McNemar's test. Findings: Five radiomic features (3 morphology, 2 texture) passed dimensionality reduction. After tuning on the training cohort (AUC = 0.75), the classifier had 80%, 83%, 79% and 80%, 89%, 67% accuracy, sensitivity, and specificity in the internal (temporally independent) and external (geographically independent) test cohorts, respectively, with no difference compared to the radiologists (p ≥ 0.617). Interpretation: X-rays radiomics-based machine learning accurately differentiates between ACT and high-grade CS of long bones. Funding: AIRC Investigator Grant.

Details

Language :
English
ISSN :
23523964
Volume :
101
Issue :
105018-
Database :
Directory of Open Access Journals
Journal :
EBioMedicine
Publication Type :
Academic Journal
Accession number :
edsdoj.2142b4a810048c697d4e1b8ce36b919
Document Type :
article
Full Text :
https://doi.org/10.1016/j.ebiom.2024.105018