Back to Search Start Over

Investigation of ice cloud modeling capabilities for the irregularly shaped Voronoi ice scattering models in climate simulations

Authors :
M. Li
H. Letu
Y. Peng
H. Ishimoto
Y. Lin
T. Y. Nakajima
A. J. Baran
Z. Guo
Y. Lei
J. Shi
Source :
Atmospheric Chemistry and Physics, Vol 22, Pp 4809-4825 (2022)
Publication Year :
2022
Publisher :
Copernicus Publications, 2022.

Abstract

Both weather–climate models and ice cloud remote sensing applications need to obtain effective ice crystal scattering (ICS) properties and the parameterization scheme. An irregularly shaped Voronoi ICS model has been suggested to be effective in remote sensing applications for several satellite programs, e.g., Himawari-8, GCOM-C (Global Change Observation Mission–Climate) and EarthCARE (Earth Cloud Aerosol and Radiation Explorer). As continuation work of Letu et al. (2016), an ice cloud optical property parameterization scheme (Voronoi scheme) of the Voronoi ICS model is employed in the Community Integrated Earth System Model (CIESM) to simulate the optical and radiative properties of ice clouds. We utilized the single-scattering properties (extinction efficiency, single-scattering albedo and asymmetry factor) of the Voronoi model from the ultraviolet to the infrared, combined with 14 408 particle size distributions obtained from aircraft measurements to complete the Voronoi scheme. The Voronoi scheme and existing schemes (Fu, Mitchell, Yi and Baum-yang05) are applied to the CIESM to simulate 10-year global cloud radiative effects during 2001–2010. Simulated globally averaged cloud radiative forcings at the top of the atmosphere (TOA) for Voronoi and the other four existing schemes are compared to the Clouds and the Earth's Radiant Energy System Energy Balanced and Filled (EBAF) product. The results show that the differences in shortwave and longwave globally averaged cloud radiative forcing at the TOA between the Voronoi scheme simulations and EBAF products are 1.1 % and 1.4 %, which are lower than those of the other four schemes. Particularly for regions (from 30∘ S to 30∘ N) where ice clouds occur frequently, the Voronoi scheme provides the closest match with EBAF products compared with the other four existing schemes. The results in this study fully demonstrated the effectiveness of the Voronoi ICS model in the simulation of the radiative properties of ice clouds in the climate model.

Subjects

Subjects :
Physics
QC1-999
Chemistry
QD1-999

Details

Language :
English
ISSN :
16807316 and 16807324
Volume :
22
Database :
Directory of Open Access Journals
Journal :
Atmospheric Chemistry and Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.2123ebcab4054ff9bf7070cd833a5c67
Document Type :
article
Full Text :
https://doi.org/10.5194/acp-22-4809-2022